
Model-Based Calibration Toolbox™
Reference

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Model-Based Calibration Toolbox™ Reference
© COPYRIGHT 2005–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2005 Online only New for Version 3.0 (Release 14SP3+)
September 2006 Online only Version 3.1 (Release 2006b)
March 2007 Online only Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 3.4.1 (Release 2008a+)
October 2008 Online only Revised for Version 3.5 (Release 2008b)
March 2009 Online only Revised for Version 3.6 (Release 2009a)
September 2009 Online only Revised for Version 3.7 (Release 2009b)
March 2010 Online only Revised for Version 4.0 (Release 2010a)
September 2010 Online only Revised for Version 4.1 (Release 2010b)
April 2011 Online only Revised for Version 4.2 (Release 2011a)
September 2011 Online only Revised for Version 4.3 (Release 2011b)
March 2012 Online only Revised for Version 4.4 (Release 2012a)
September 2012 Online only Revised for Version 4.5 (Release 2012b)
March 2013 Online only Revised for Version 4.6 (Release 2013a)
September 2013 Online only Revised for Version 4.6.1 (Release 2013b)
March 2014 Online only Revised for Version 4.7 (Release 2014a)
October 2014 Online only Revised for Version 4.8 (Release 2014b)
March 2015 Online only Revised for Version 4.8.1 (Release 2015a)
September 2015 Online only Revised for Version 5.0 (Release 2015b)
March 2016 Online only Revised for Version 5.1 (Release 2016a)
September 2016 Online only Revised for Version 5.2 (Release 2016b)
March 2017 Online only Revised for Version 5.2.1 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)
September 2019 Online only Revised for Version 5.7 (Release 2019b)
March 2020 Online only Revised for Version 5.8 (Release 2020a)

Commands
1

v

Contents

Commands

1

MBC Model Fitting
Create experimental designs and statistical models for model-based calibration

Description
The MBC Model Fitting app enables you to create experimental designs, fit statistical models to
engine data, and export the models to generate optimal calibrations in MBC Optimization app. You
can also export models to MATLAB® and Simulink® to reuse statistical models for control design,
hardware-in-the-loop testing, or powertrain simulation.

Open the MBC Model Fitting App
• MATLAB Toolstrip: On the Apps tab, under Automotive, click the app icon.
• MATLAB command prompt: Enter mbcmodel.

Examples
• “Model Set Up”
• “Multi-Injection Diesel Calibration”
• “Gasoline Engine Calibration”
• “Model Export to MATLAB, Simulink, and CAGE”

Programmatic Use
mbcmodel opens the Model Browser or brings an existing Model Browser to the front of the screen.

mbcmodel fileName.mat opens the Model Browser and loads the file specified by fileName.mat.

See Also
Apps
MBC Optimization

Topics
“Model Set Up”
“Multi-Injection Diesel Calibration”
“Gasoline Engine Calibration”
“Model Export to MATLAB, Simulink, and CAGE”

Introduced before R2006a

1 Commands

1-2

MBC Optimization
Generate optimal lookup tables for model-based calibration

Description
The MBC Optimization app lets you use statistical models created in MBC Model Fitting app to
generate optimal calibrations for lookup tables that control engine functions. You can generate
calibrations and lookup tables for complex, high-degree-of-freedom engines to identify the optimal
balance of engine performance, emissions, and fuel economy.

Open the MBC Optimization App
• MATLAB Toolstrip: On the Apps tab, under Automotive, click the app icon.
• MATLAB command prompt: Enter cage.

Examples
• “Calibration Setup”
• “Optimization”
• “Feature Calibration”
• “Tradeoff Calibration”

Programmatic Use
cage opens the CAGE Browser or brings an existing CAGE Browser to the front of the screen. CAGE
stands for Calibration Generation.

cage fileName.cag opens the CAGE Browser and loads the file specified by fileName.

See Also
Apps
MBC Model Fitting

Topics
“Calibration Setup”
“Optimization”
“Feature Calibration”
“Tradeoff Calibration”

Introduced before R2006a

 MBC Optimization

1-3

ActiveInputs
Active boundary model inputs

Syntax
B.ActiveInputs = [X]

Description
ActiveInputs is a property of mbcboundary.Model.

B.ActiveInputs = [X] sets the active inputs for the boundary model. X is a logical row vector
indicating which inputs to use to fit a boundary. You can build boundary models using subsets of input
factors and then combine them for the most accurate boundary. This approach can provide more
effective results than including all inputs.

Examples
To make a boundary model using only the first two inputs:

B.ActiveInputs = [true true false false];

Introduced in R2009b

1 Commands

1-4

Add
Add boundary model to tree and fit to test plan data

Syntax
B = Add(Tree,B)
B = Add(Tree,B,InBest)

Description
This is a method of mbcboundary.Tree.

B = Add(Tree,B) adds the boundary model to the tree and fits the boundary model to the test plan
data. Tree is an mbcboundary.Tree object, B is a new boundary model object. The boundary model
must have the same inputs as the boundary tree. The boundary model is always fitted when you add it
to the boundary tree. This fitting ensures that the fitting data is compatible with the test plan data.
The method returns the fitted boundary model.

B = Add(Tree,B,InBest) adds and fits the boundary model, and InBest specifies whether to
include the boundary model in the best boundary model for the boundary tree. By default, the best
model includes the new boundary model.

See Also
Update | Remove | CreateBoundary

Introduced in R2009b

 Add

1-5

AddConstraint
Add design constraint

Syntax
D = AddConstraint(D,c)

Description
AddConstraint is a method of mbcdoe.design.

D = AddConstraint(D,c) adds constraint c to the design. You must call AddConstraint to apply
the constraint and remove points outside the constraint.

If c is a boundary model, AddConstraint also converts the boundary model object to a
mbcdoe.designconstraint object.

See Also
CreateConstraint

Introduced in R2008a

1 Commands

1-6

AddDesign
Add design to test plan

Syntax
D = AddDesign(T,D)
D = AddDesign(T,Level,D)
D = AddDesign(T,Level,D,Parent)

Description
AddDesign is a method of mbcmodel.testplan.

D = AddDesign(T,D) adds a design to test plan T.

D = AddDesign(T,Level,D) adds a design and specifies the level.

D = AddDesign(T,Level,D,Parent) adds a child design.

D is the array of designs to be added to the test plan, T.

Level is the test plan level. By default the level is the outer level (i.e., Level 1 for One-stage, Level 2
(global) for Two-stage).

Parent is the parent design in the design tree. By default designs are added to the top level of the
design tree. See Designs for more information on the design tree.

In order to ensure that the design names are unique in the test plan, the design name will be changed
when adding a design to a test plan if a design of the same name already exists. The array of designs
with modified names is an output.

Examples
To add three designs to the test plan global (2) level:

D = AddDesign(TP, [sfDesign, parkedCamsDesign, mainDesign])

See Also
UpdateDesign | RemoveDesign | FindDesign

Introduced in R2008a

 AddDesign

1-7

AddFilter
Add user-defined filter to dataset

Syntax
D = AddFilter(D, expr)

Description
This is a method of mbcmodel.data.

A filter is a constraint on the dataset used to exclude some records. You define the filter using logical
operators or a logical function on the existing variables.

D is the mbcmodel.data object you want to filter.

expr is an input character vector holding the expression that defines the filter.

Examples
AddFilter(D, 'AFR < AFR_CALC + 10');

The effect of this filter is to keep all records where AFR < AFR_CALC +10.

AddFilter(D, 'MyFilterFunction(AFR, RPM, TQ, SPK)');

The effect of this filter is to apply the function MyFilterFunction using the variables AFR, RPM,
TQ, SPK.

All filter functions receive an nx1 vector for each variable and must return an nx1 logical array out.
In that array, true (or 1) indicates a record to keep, and false (or 0) indicates a record to discard.

See Also
ModifyFilter | RemoveFilter | Filters | AddTestFilter | ModifyTestFilter

Introduced before R2006a

1 Commands

1-8

AddTestFilter
Add user-defined test filter to dataset

Syntax
D = AddTestFilter(D, expr)

Description
This is a method of mbcmodel.data.

A test filter is a constraint on the dataset used to exclude some entire tests. You define the test filter
using logical operators or functions on the existing variables.

D is your data object.

expr is the input character vector holding the definition of the new test filter.

Examples
AddTestFilter(d1, 'any(n>1000)');

The effect of this filter is to include all tests in which all records have speed (n) greater than 1000.

Similar to filters, test filter functions are iteratively evaluated on each test, receiving an nx1 vector
for each variable input in a test, and must return an 1x1 logical array out. In that array, true (or 1)
indicates a record to keep, and false (or 0) indicates a test to discard.

AddTestFilter(data, 'length(LOGNO) > 6');

The effect of this filter is to include all tests with more than 6 records.

See Also
ModifyTestFilter | RemoveTestFilter | TestFilters | AddFilter

Introduced before R2006a

 AddTestFilter

1-9

AddVariable
Add user-defined variable to dataset

Syntax
D = AddVariable(D, expr, units)

Description
This is a method of mbcmodel.data.

You can define new variables in terms of existing variables. Note that variable names are case
sensitive.

D is your data object.

expr is the input character vector holding the definition of the new variable.

units is an optional input character vector holding the units of the variable.

Examples
AddVariable(D, 'MY_NEW_VARIABLE = TQ*AFR/2');
AddVariable(D, 'funcVar = MyVariableFunction(TQ, AFR, RPM)',
'lb');
AddVariable(D, 'TQ=tq');

The last example could be useful if the signal names in the data do not match the model input factor
names in the test plan template file.

See Also
ModifyVariable | RemoveVariable | UserVariables

Introduced before R2006a

1 Commands

1-10

AliasMatrix
Alias matrix for linear model parameters

Syntax
A = M.AliasMatrix

Description
This is a method of mbcmodel.linearmodel.

A = M.AliasMatrix calculates the alias matrix for the linear model parameters (where M is a linear
model).

Examples
A = AliasMatrix(knot_model)

See Also
ParameterStatistics

Introduced in R2007a

 AliasMatrix

1-11

AlternativeModelStatistics
Summary statistics for alternative models

Syntax
S = AlternativeModelStatistics(R)

S = AlternativeModelStatistics(R, Name)

Description
This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

This returns an array (S) of summary statistics of all the alternative model fits, to be used to select
the best model. These are the summary statistics seen in the list view at the bottom of the Model
Browser GUI in any model view.

You must use CreateAlternativeModels before you can compare the alternative responses using
AlternativeModelStatistics. Then use ChooseAsBest.

R is the model object whose alternative response models you want to compare. R could be a local (L),
response feature (R) or hierarchical response (HR) model.

S is a structure containing Statistics and Names fields.

• S.Statistics is a matrix of size (number alternative responses x number of statistics).
• S.Names is a cell array containing the names of all the statistics.

The available statistics vary according to what kind of parent model (two-stage, local, response
feature or response) produced the alternative models, and include PRESS RMSE, RMSE, and Two-
Stage RMSE.

All the available statistics are calculated unless you specify which you want. You can specify only the
statistics you require using the following form:

S = AlternativeModelStatistics(R, Name)

This returns a double matrix containing only the statistics specified in Name.

Note that you use SummaryStatistics to examine the fit of the current model, and
AlternativeModelStatistics to examine the fit of several alternative child models.

Examples
S = AlternativeModelStatistics(R);

See Also
CreateAlternativeModels | SummaryStatistics | ChooseAsBest

1 Commands

1-12

Introduced before R2006a

 AlternativeModelStatistics

1-13

AlternativeResponses
Array of alternative responses for this response

Syntax
altR = R.AlternativeResponses

Description
This is a property of the response model object, mbcmodel.response (R).

It returns a list of alternative responses used for one-stage or response feature models.

Examples
R = testplan.Responses;
TQ = R(1);
AR = TQ.AlternativeResponses;

See Also
LocalResponses | ResponseFeatures(Local Response)

1 Commands

1-14

Append
Append data to dataset

Syntax
D = Append(D, otherData)

Description
This is a method of mbcmodel.data.

You can use this to add new data to your existing dataset, D.

otherData is the input argument holding the extra data to add below the existing data. This
argument can either be an mbcmodel.data object or a double array. The behavior is different
depending on the type.

If otherData is an mbcmodel.data object then Append will look for common SignalNames
between the two sets of data. If no common SignalNames are found then a error will be thrown. Any
common signals will be Appended to the existing data and other signals will be filled with NaN.

If otherData is a double array then it must have exactly the same number of columns as there are
SignalNames in the data, and a simple vertcat (vertical concatenation) is applied between the
existing data and otherData.

Examples
Append(D, CreateData('aDataFile.xls'));
Append(D, rand(10,100));

See Also
CreateData

Introduced before R2006a

 Append

1-15

AttachData
Attach data from project to test plan

Syntax
newD = AttachData(T, D, Property1, Value, Property2, Value...)

Description
This is a method of mbcmodel.testplan. Use it to attach the data you want to model to the test
plan.

T is the test plan object, D is the data object.

The following table shows the valid properties and their corresponding possible values. The first five
are optional property/value pairs to control how the data is matched to a design. These are the
settings shown in the last page of the Data Wizard (if there is a design) in the Model Browser. For
more information on the meaning of these settings, refer to the Data Wizard section (under Data) in
the Model Browser User's Guide.

The usedatarange property changes the test plan input ranges to the range of the data.

Note If the testplan has responses set up the models are fitted when you attach data.

Property Value Default
unmatcheddata {'all', 'none'} 'all'
moredata {'all', 'closest'} 'all'
moredesign {'none', 'closest'} 'none'
tolerances [1xNumInputs double] ModelRange/20
usedatarange logical false

When you attach data to a test plan the Name property of the test plan inputs is used to select data
channels. If the Name is empty then the Symbol is used as the Name. If the Name does not exist in
the dataset, an error is generated.

When a test plan has data attached, it is only possible to change the symbols, ranges or nonlinear
transforms of the test plan inputs.

Examples
To use all the data in DATA in the test plan TESTPLAN and set the input ranges to the data range:

newD = AttachData(TESTPLAN, DATA,'usedatarange',true);

To match data DATA to the best design in testplan TESTPLAN within specified tolerances:

1 Commands

1-16

tol = [0.075, 100, 1, 2];
unmatch = 'all';
moredata = 'all';
moredes = 'none';
AttachData(testplan, data ,...
 'tolerances', tol,...
 'unmatcheddata', unmatch,...
 'moredata', moredata,...
 'moredesign', moredes);

You can use AttachData to use data from one project in another project, as follows:

p1 = mbcmodel.LoadProject(filename);
p2 = mbcmodel.LoadProject(filename2);
p1.Testplan.AttachData(p2.Data);

See Also
Data | CreateData | DetachData

Introduced before R2006a

 AttachData

1-17

Augment
Add design points

Syntax
D = Augment(D,Numpoints)
D = Augment(D,'Prop1',value1,...)

Description
Augment is a method of mbcdoe.design. Use it to add points to a design using a specified design
generator. After augmenting a design, the design Style is set to Custom unless an optimal design is
used for augmentation, as in the Design Editor.

D = Augment(D,Numpoints) augments the design with the number of points specified by
Numpoints using the current generator settings.

D = Augment(D,'Prop1',value1,...) augments the design with the generator specified by the
generator property value pairs.

You can use the Augment method to add points to an existing type using a different design type.

OptDesign = Augment(OptDesign,...
 'Type','V-optimal',...
 'MaxIterations',200,...
 'NoImprovement', 50,...
 'NumberOfPoints',20);

To set all designs points to fixed and then augment an existing design optimally, use the FixPoints
method to fix all the points as follows:

OptDesign = FixPoints(OptDesign);
OptDesign = Augment(OptDesign,...
 'Type','V-optimal',...
 'MaxIterations',200,...
 'NoImprovement', 50,...
 'NumberOfPoints',20);

When augmenting with an optimal design generator existing points which are not fixed may be
changed. To add points optimally and keep only fixed points, use RemovePoints before augmenting,
e.g.,

OptDesign = RemovePoints(OptDesign,'free');
OptDesign = Augment(OptDesign,...
 'Type','V-optimal',...
 'MaxIterations',200,...
 'NoImprovement', 50,...
 'NumberOfPoints',20);

To get a candidate set object for use with an optimal design:

C = CreateCandidateSet(OptDesign,'Type', 'Grid',...
 'NumberOfLevels',[21 21 21]);

1 Commands

1-18

You see an error if you try to call Augment when the design Style is User-defined or Experimental
data.

Examples
To create a candidate set and then optimally augment a design with 10 points:

CandidateSet = augmentedDesign.CreateCandidateSet...
('Type', 'Grid');
CandidateSet.NumberOfLevels = [21 21 21 21];
augmentedDesign = Augment(augmentedDesign,...
 'Type', 'V-optimal',...
 'NumberOfPoints', 10,...
 'CandidateSet', CandidateSet,...
 'MaxIterations', 200,...
 'NoImprovement', 50);

See Also
Generate | CreateCandidateSet

Introduced in R2008a

 Augment

1-19

BeginEdit
Begin editing session on data object

Syntax
D = BeginEdit(D)

Description
This is a method of mbcmodel.data.

You must call this method before you can make any changes to a data object.

There are no input arguments. You must call BeginEdit before attempting to modify your data
object (D in the example below) in any way. An error will be thrown if this condition is not satisfied.
Data which cannot be edited (see IsEditable) will throw an error if BeginEdit is called.

Examples
BeginEdit(D);

See Also
CommitEdit | RollbackEdit | IsEditable | IsBeingEdited

Introduced before R2006a

1 Commands

1-20

BestDesign
Best design in test plan

Syntax
T.BestDesign{Level} = d;

Description
BestDesign is a property of mbcdmodel.testplan.

T.BestDesign{Level} = d; sets d as the best design, where Level is the test plan level. There
can be one best design for each level, but the best global (2) level design is used for matching to data
when you call AttachData.

BestDesign is a cell array with a cell per level. TP.BestDesign{1} is the best design for the first
level and TP.BestDesign{2} is best design for the second level.

Examples
To set the design globalDesign as the best design at the global (2) level:

T.BestDesign{2} = globalDesign

See Also
CreateDesign

Introduced in R2008a

 BestDesign

1-21

BestModel
Combined best boundary models

Syntax
mbcboundary.Tree.BestModel

Description
This is a property of mbcboundary.Tree and mbcboundary.TwoStageTree.

mbcboundary.Tree.BestModel returns the combined boundary model containing all best
boundary models in the tree (read only).

BestModel is the boundary model combining the models selected as best. You can select which
boundary models to include in the best model with InBest. If the best boundary model includes more
than one boundary model, that boundary model is an mbcboundary.Boolean object.

For TwoStageTree objects, the BestModel property contains the best boundary model (local,
global, and response) (read only). In this case, BestModel is the boundary model combining the best
local, global and response boundary models. You can select which boundary models to include in the
best model with InBest. If the best boundary model includes more than one boundary model, that
boundary model is an mbcboundary.Boolean object.

See Also
InBest

1 Commands

1-22

Boundary
Get boundary model tree from test plan

Syntax
BoundaryTree = mbcmodel.testplan.Boundary

Description
Boundary is a property of mbcmodel.testplan.

BoundaryTree = mbcmodel.testplan.Boundary returns the boundary tree for the test plan. The
BoundaryTree is a container for all the boundary models you create. BoundaryTree is an
mbcboundary.Tree object.

Examples
To get the boundary tree from the test plan Boundary property:

BoundaryTree = mbcmodel.testplan.Boundary

See Also
CreateBoundary | mbcboundary.Tree | mbcboundary.Model

 Boundary

1-23

BoundaryModel
Get boundary model from test plan

Syntax
Best = BoundaryModel (T)
Best = BoundaryModel (T, Type)

Description
BoundaryModel is a method of mbcmodel.testplan.

Best = BoundaryModel (T) returns the best boundary model for T, the test plan. Best is a
boundary model subclass of mbcboundary.AbstractBoundary: mbcboundary.Model,
mbcboundary.Boolean, mbcboundary.PointByPoint, or mbcboundary.TwoStage.

Note Before Release 2009b, BoundaryModel returned an mbcdoe.designconstraint object. Use
designconstraint to convert a boundary to a design constraint.

Best = BoundaryModel (T, Type) is the best boundary model for the specified type associated
with the test plan. Type can be any of the following values:

• 'all': Best boundary model for all inputs (default)
• 'local' : Best local boundary model
• 'global' : Best global boundary model

Examples
To load boundary constraints from another project file and add to design:
otherProject = mbcmodel.LoadProject([matlabroot,'\toolbox\...
mbc\mbctraining\Gasoline_project.mat']);
boundaryConstraints = otherProject.Testplans(1).Boundary.Global.BestModel
Design.Constraints = boundaryConstraints;

When you add the constraints to the design, the boundary model object converts automatically to an
mbcdoe.designconstraint.

See Also
Boundary | CreateBoundary

Introduced in R2008a

1 Commands

1-24

BoxCoxSSE
SSE and confidence interval for Box-Cox transformations

Syntax
[sse, ci, lambda] = BoxCoxSSE(Model, lambda)
[sse, ci, lambda] = BoxCoxSSE(Model)
BoxCoxSSE(Model, ...)

Description
This is a method of mbcmodel.linearmodel.

[sse, ci, lambda] = BoxCoxSSE(Model, lambda) computes the sum of squares error (sse)
and confidence interval (ci) for values of the model under different Box-Cox transforms (as given by
the parameter lambda). The data used is that which was used to fit the model. sse is a vector the
same size as lambda and ci is a scalar. There is no statistical difference between the Box-Cox
transforms where sse less than ci.

[sse, ci, lambda] = BoxCoxSSE(Model) If lambda is not specified, then default values for are
used and these are returned in third output argument.

BoxCoxSSE(Model, ...) If no output arguments are requested then a plot of SSE versus lambda is
displayed. The confidence intervals are also displayed on this plot.

Examples
To try several different values, of the Box-Cox parameter and plot the results:
lambda = -3:0.5:3;
[sse, ci] = BoxCoxSSE(M, lambda);
semilogy(lambda, sse, 'bo-', lambda([1,end]), [ci, ci], 'r--');
xlabel('Box-Cox parameter, \lambda');
ylabel('SSE');

Note that BoxCoxSSE does not set a Box-Cox transform in the model. To do this use:

M.Properties.BoxCox = 0;
[S,M] = M.Fit;

See Also
ParameterStatistics

Introduced in R2007a

 BoxCoxSSE

1-25

Centers
Centers of RBF model

Syntax
centers = params.Centers

Description
This is a property of mbcmodel.rbfmodelparameters, for Radial Basis Function (RBF) models only.
This returns an array of size number_of_centers by number_of_variables.

Examples
centers = params.Centers;

See Also
Widths

1 Commands

1-26

cgoptimoptions
Create custom optimization options object

Syntax

Description
Use the cgoptimoptions object to define custom optimization settings for use in CAGE.

For a list of cgoptimoptions methods, see “Optimization Function Reference” in the CAGE
documentation.

For instructions, see “User-Defined Optimizations” in the CAGE documentation.

Introduced in R2010b

 cgoptimoptions

1-27

cgoptimstore
Construct optimization interface

Syntax

Description
When running a user-defined optimization, you use the cgoptimstore object in the Evaluation
section of your script. Use the cgoptimstore object to define the interface to CAGE for your custom
optimization routine. CAGE interacts with your routine (obtaining inputs and sending outputs) via the
cgoptimstore object. The cgoptimstore object provides methods for accessing information about
and evaluating the objectives and constraints that have been defined in the CAGE GUI. The
cgoptimstore object also provides the interface for sending the optimization results back to CAGE
when an optimization is completed.

For a list of cgoptimstore methods, see “Optimization Function Reference” in the CAGE
documentation.

For instructions, see “User-Defined Optimizations” in the CAGE documentation.

Introduced in R2010b

1 Commands

1-28

ChooseAsBest
Choose best model from alternative responses

Syntax
ChooseAsBest(R, Index)

Description
This is a method of the response model object, mbcmodel.response. This is the same function as
selecting the best model in the Model Selection window of the Model Browser GUI. For a local model
MakeHierarchicalResponse performs a similar function.

R is the object containing the response model.

Index is the number of the response model you want to choose as best. Use
AlternativeResponses to find the index for each response model, and use
AlternativeModelStatistics to choose the best fit.

Examples
ChooseAsBest(R, AlternativeModel)
RMSE = AlternativeModelStatistics(R, 'RMSE');
[mr, Best] = min(RMSE);
ChooseAsBest(R, Best);

See Also
AlternativeResponses | AlternativeModelStatistics | DiagnosticStatistics |
MakeHierarchicalResponse

Introduced before R2006a

 ChooseAsBest

1-29

CommitEdit
Update temporary changes in data

Syntax
D = CommitEdit(D)

Description
This is a method of mbcmodel.data.

Use this to apply changes you have made to the data, such as creating new variables and applying
filters to remove unwanted records.

There are no input arguments. Once you have finished editing your data object D you must commit
your changes back to the project. Data can only be committed if both IsEditable and
IsBeingEdited are true. CommitEdit will throw an error if these conditions are not met.

Examples
D = P.Data;
BeginEdit(D);
AddVariable(D, 'TQ = tq', 'lbft');
AddFilter(D, 'TQ < 200');
DefineTestGroups(D, {'RPM' 'AFR'}, [50 10], 'MyLogNo');
CommitEdit(D);

For an example situation which results in CommitEdit failing:

D = p.Data;
D1 = p.Data;
BeginEdit(D1);
tp = p.Testplan;
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are mbcmodel.data objects.

At this point IsEditable(D1) becomes false because it is now Attached to the test plan and hence
can only be modified from the test plan. If you now enter:

OK = D1.IsEditable

the answer is false.

If you now enter:

CommitEdit(D1);

An error is thrown because the data is no longer editable. The error message informs you that the
data may have been attached to a test plan and can only be edited from there.

1 Commands

1-30

See Also
BeginEdit | RollbackEdit | IsEditable | IsBeingEdited

Introduced before R2006a

 CommitEdit

1-31

ConstrainedGenerate
Generate constrained space-filling design of specified size

Syntax
design = ConstrainedGenerate(design, NumPoints, 'UnconstrainedSize', Size,
'MaxIter', NumIterations)
design = ConstrainedGenerate(design, NumPoints, OPTIONS)

Description
ConstrainedGenerate is a method of mbcdoe.design. Use it to generate a space-filling design of
specified size within the constrained region. This method only works for space-filling designs. It may
not be possible to achieve a specified number of points, depending on the generator settings and
constraints.

design = ConstrainedGenerate(design, NumPoints, 'UnconstrainedSize', Size,
'MaxIter', NumIterations) tries to generate a design with the number of constrained points
specified by NumPoints. You can supply parameter value pairs for the options or you can use a
structure:design = ConstrainedGenerate(design, NumPoints, OPTIONS).

• MaxIter — Maximum iterations. Default: 10
• UnconstrainedSize — Total number of points in unconstrained design. Default: NumPoints

The algorithm ConstrainedGenerate produces a sequence of calls to Generate, and updates the
UnconstrainedSize using the following formula:

UnconstrainedSize = ceil(UnconstrainedSize * NumPoints/D.NumberOfPoints);

Examples
With ConstrainedGenerate, make a 200 point design, using an existing space-filling design
sfDesign, and inspect the constrained and total number of points:
sfDesign = ConstrainedGenerate(sfDesign, 200, 'UnconstrainedSize', 800, 'MaxIter',10);

% How did we do?
finalNumberOfPoints = sfDesign.NumberOfPoints
% How many points did we need in total?
totalNumberOfPoints = sfDesign.Generator.NumberOfPoints

finalNumberOfPoints =
 200
totalNumberOfPoints =
 839

See Also
CreateConstraint | Generate

Introduced in R2008a

1 Commands

1-32

Constraints
Constraints in design

Syntax
Constraints = D.Constraints

Description
Constraints is a property of mbcdoe.design.

Constraints = D.Constraints Designs have a Constraints property, initially this is empty:

constraints = design.Constraints

constraints =
0x0 array of mbcdoe.designconstraint

Use CreateConstraint to form constraints.

See Also
Topics
CreateConstraint
AddConstraint

 Constraints

1-33

CopyData
Create data object from copy of existing object

Syntax
newD = CopyData(P, D)

newD = CopyData(P, Index)

Description
This is a method of mbcmodel.project.

Use this to duplicate data, for example if you want to make changes for further modeling but want to
retain the existing dataset. You can refer to the data object either by name or index.

P is the project object.

D is the data object you want to copy.

Index is the index of the data object you want to copy.

Examples
D2 = CopyData(P1, D1);

See Also
Data | CreateData | RemoveData

Introduced before R2006a

1 Commands

1-34

Correlation
Correlation matrix for linear model parameters

Syntax
STATS = Correlation(LINEARMODEL)

Description
This is a method of mbcmodel.linearmodel.

STATS = Correlation(LINEARMODEL) calculates the correlation matrix for the linear model
parameters.

Examples
Stats = Correlation(knot_model)

See Also
ParameterStatistics

Introduced in R2007a

 Correlation

1-35

Covariance
Covariance matrix for linear model parameters

Syntax
STATS = Covariance(LINEARMODEL)

Description
This is a method of mbcmodel.linearmodel.

STATS = Covariance(LINEARMODEL) calculates the covariance matrix for the linear model
parameters.

Examples
Stats = Covariance(knot_model)

See Also
ParameterStatistics

Introduced in R2007a

1 Commands

1-36

CreateAlgorithm
Create algorithm

Syntax
newalg = alg.CreateAlgorithm(AlgorithmName)

Description
This is a method of mbcmodel.fitalgorithm.

newalg = alg.CreateAlgorithm(AlgorithmName) creates an algorithm of the specified type.
alg is a mbcmodel.fitalgorithm object. AlgorithmName must be in the list of alternative
algorithms given by alg.getAlternativeNames.

To change the fit algorithm for a model:

>> model = mbcmodel.CreateModel('Polynomial', 2);
>> minpress = model.FitAlgorithm.CreateAlgorithm('Minimize PRESS');
>> model.FitAlgorithm = minpress;

The AlgorithmName determines what properties you can set. You can display the properties for an
algorithm as follows:

>> model.FitAlgorithm.properties

Algorithm: Minimize PRESS
Alternatives: 'Least Squares','Forward Selection','Backward
Selection','Prune'
 MaxIter: Maximum Iterations (int: [1,1000])

As a simpler alternative to using CreateAlgorithm, you can assign the algorithm name directly to the
algorithm. For example:

B.FitAlgorithm.BoundaryPointOptions = 'Boundary Only';

Or:

m.FitAlgorithm = 'Minimize PRESS';

Case and spaces are ignored. See FitAlgorithm.

The following sections list the properties available for each algorithm type.

Linear Model Algorithm Properties
Linear Models Algorithms

Used by polynomials, hybrid splines and as the StepAlgorithm for RBF algorithms.

Algorithm: Least Squares

Alternatives: 'Minimize PRESS','Forward Selection','Backward Selection','Prune'

 CreateAlgorithm

1-37

Algorithm: Minimize PRESS

Alternatives: 'Least Squares','Forward Selection','Backward Selection','Prune'

• MaxIter: Maximum Iterations (int: [1,1000])

Algorithm: Forward Selection

Alternatives: 'Least Squares','Minimize PRESS','Backward Selection','Prune'

• ConfidenceLevel: Confidence level (%) (numeric: [70,100])
• MaxIter: Maximum Iterations (int: [1,1000])
• RemoveAll: Remove all terms first (Boolean)

Algorithm: Backward Selection

Alternatives: 'Least Squares','Minimize PRESS','Forward Selection','Prune'

• ConfidenceLevel: Alpha (%) (numeric: [70,100])
• MaxIter: Maximum Iterations (int: [1,1000])
• IncludeAll: Include all terms first (Boolean)

Algorithm: Prune

Alternatives: 'Least Squares','Minimize PRESS','Forward Selection','Backward
Selection'

• Criteria (PRESS RMSE|RMSE|GCV|Weighted PRESS|-2logL|AIC|AICc|BIC|R^2|R^2 adj|PRESS
R^2|DW|Cp|cond(J))

• MinTerms: Minimum number of terms (int: [0,Inf])
• Tolerance (numeric: [0,1000])
• IncludeAll: Include all terms before prune (Boolean)
• Display (Boolean)

RBF Algorithm Properties

For information about any of the RBF and Hybrid RBF algorithm properties, see “Radial Basis
Functions for Model Building”, and especially “Fitting Routines” in the Model Browser User's Guide.

Algorithm: RBF Fit

• WidthAlgorithm: Width selection algorithm (mbcmodel.fitalgorithm)
• StepAlgorithm: Stepwise (mbcmodel.fitalgorithm)

Width Selection Algorithms

Alternatives: 'WidPerDim','Tree Regression'

Algorithm: TrialWidths

• NestedFitAlgorithm: Lambda selection algorithm (mbcmodel.fitalgorithm)
• Trials: Number of trial widths in each zoom (int: [2,100])

1 Commands

1-38

• Zooms: Number of zooms (int: [1,100])
• MinWidth: Initial lower bound on width (numeric: [2.22045e-016,1000])
• MaxWidth: Initial upper bound on width (numeric: [2.22045e-016,100])
• PlotFlag: Display plots (Boolean)
• PlotProgress: Display fit progress (Boolean)

Algorithm: WidPerDim

Alternatives: 'TrialWidths','Tree Regression'

• NestedFitAlgorithm: Lambda selection algorithm (mbcmodel.fitalgorithm)
• DisplayFlag: Display (Boolean)
• MaxFunEvals: Maximum number of test widths (int: [1,1e+006])
• PlotProgress: Display fit progress (Boolean)

Algorithm: Tree Regression

Alternatives: 'TrialWidths','WidPerDim'

• MaxNumRectangles: Maximum number of panels (int: [1,Inf])
• MinPerRectangle: Minimum data points per panel (int: [2,Inf])
• RectangleSize: Shrink panel to data (Boolean)
• AlphaSelectAlg: Alpha selection algorithm (mbcmodel.fitalgorithm)

Lambda Selection Algorithms

Algorithm: IterateRidge

Alternatives: 'IterateRols','StepItRols'

• CenterSelectionAlg: Center selection algorithm (mbcmodel.fitalgorithm)
• MaxNumIter: Maximum number of updates (int: [1,100])
• Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])
• NumberOfLambdaValues: Number of initial test values for lambda (int: [0,100])
• CheapMode: Do not reselect centers for new width (Boolean)
• PlotFlag: Display (Boolean)

Algorithm: IterateRols

Alternatives: 'IterateRidge','StepItRols'

• CenterSelectionAlg: Center selection algorithm (mbcmodel.fitalgorithm)
• MaxNumIter: Maximum number of iterations (int: [1,100])
• Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])
• NumberOfLambdaValues: Number of initial test values for lambda (int: [0,100])
• CheapMode: Do not reselect centers for new width (Boolean)
• PlotFlag: Display (Boolean)

Algorithm: StepItRols

 CreateAlgorithm

1-39

Alternatives: 'IterateRidge','IterateRols'

• MaxCenters: Maximum number of centers (evalstr)
• PercentCandidates: Percentage of data to be candidate centers (evalstr)
• StartLambdaUpdate: Number of centers to add before updating (int: [1,Inf])
• Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])
• MaxRep: Maximum number of times log10(GCV) change is minimal (int: [1,100])

Center Selection Algorithms

Algorithm: Rols

Alternatives: 'RedErr','WiggleCenters','CenterExchange'

• MaxCenters: Maximum number of centers (evalstr)
• PercentCandidates: Percentage of data to be candidate centers (evalstr)
• Tolerance: Regularized error tolerance (numeric: [2.22045e-016,1])

Algorithm: RedErr

Alternatives: 'Rols','WiggleCenters','CenterExchange'

• MaxCenters: Number of centers (evalstr)

Algorithm: WiggleCenters

Alternatives: 'Rols','RedErr','CenterExchange'

• MaxCenters: Number of centers (evalstr)
• PercentCandidates: Percentage of data to be candidate centers (evalstr)

Algorithm: CenterExchange

Alternatives: 'Rols','RedErr','WiggleCenters'

• MaxCenters: Number of centers (evalstr)
• NumLoops: Number of augment/reduce cycles (int: [1,Inf])
• NumAugment: Number of centers to augment by (int: [1,Inf])

Tree Regression Algorithms

Algorithm: Trial Alpha

Alternatives: 'Specify Alpha'

• AlphaLowerBound: Initial lower bound on alpha (numeric: [2.22045e-016,Inf])
• AlphaUpperBound: Initial upper bound on alpha (numeric: [2.22045e-016,Inf])
• Zooms: Number of zooms (int: [1,Inf])
• Trials: Trial alphas per zoom (int: [2,Inf])
• Spacing: Spacing (LinearLogarithmic)
• CenterSelectAlg: Center selection algorithm (mbcmodel.fitalgorithm)

1 Commands

1-40

Algorithm: Specify Alpha

Alternatives: 'Trial Alpha'

• Alpha: Width scale parameter, alpha (numeric: [2.22045e-016,Inf])
• NestedFitAlgorithm: Center selection algorithm (mbcmodel.fitalgorithm)

Algorithm: Tree-based Center Selection

Alternatives: 'Generic Center Selection'

• ModelSelectionCriteria: Model selection criteria (BIC|GCV)
• MaxNumberCenters: Maximum number of centers (evalstr)

Algorithm: Generic Center Selection

Alternatives: 'Tree-based Center Selection'

• CenterSelectAlg: Center selection algorithm (mbcmodel.fitalgorithm)

Hybrid RBF Algorithms

Algorithm: RBF Fit

• WidthAlgorithm: Width selection algorithm (mbcmodel.fitalgorithm)
• StepAlgorithm: Stepwise (mbcmodel.fitalgorithm)

Width Selection Algorithms

Algorithm: TrialWidths

• NestedFitAlgorithm: Lambda and term selection algorithm (mbcmodel.fitalgorithm)
• Trials: Number of trial widths in each zoom (int: [2,100])
• Zooms: Number of zooms (int: [1,100])
• MinWidth: Initial lower bound on width (numeric: [2.22045e-016,1000])
• MaxWidth: Initial upper bound on width (numeric: [2.22045e-016,100])
• PlotFlag: Display plots (Boolean)
• PlotProgress: Display fit progress (Boolean)

Nested Fit Algorithms

Algorithm: Twostep

Alternatives: 'Interlace'

• MaxCenters: Maximum number of centers (evalstr)
• PercentCandidates: Percentage of data to be candidate centers (evalstr)
• StartLambdaUpdate: Number of terms to add before updating (int: [1,Inf])
• Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])
• MaxRep: Maximum number of times log10(GCV) change is minimal (int: [1,100])
• PlotFlag: Display (Boolean)

 CreateAlgorithm

1-41

Algorithm: Interlace

Alternatives: 'Twostep'

• MaxParameters: Maximum number of terms (evalstr)
• MaxCenters: Maximum number of centers (evalstr)
• PercentCandidates: Percentage of data to be candidate centers (evalstr)
• StartLambdaUpdate: Number of terms to add before updating (int: [1,Inf])
• Tolerance: Minimum change in log10(GCV) (numeric: [2.22045e-016,1])
• MaxRep: Maximum number of times log10(GCV) change is minimal (int: [1,100])

Boundary Model Fit Algorithm Parameters

The following sections list the available fit algorithm parameters for command-line boundary models.
The boundary model fit algorithm parameters have the same fit options as the Boundary Editor GUI.
For instructions on using these fit options, see “Editing Boundary Model Fit Options” in the Model
Browser documentation.

Convex Hull

KeepAllFacets: Boolean to indicate whether to keep all facets (default is false, do not keep all
facets).

Tolerance: Tolerance for maximum 1-norm distance allowed for removing facets (numeric: [0,Inf],
default 0.02). To remove more facets, increase the tolerance.

For more information, see “Convex Hull Setting” in the Model Browser documentation.

Ellipsoid

Algorithm: Constraint Fitting

BoundaryPointOptions: Boundary Points (mbcmodel.fitalgorithm)

The boundary points algorithm uses optimization to find the best ellipse. These options are from
fmincon.

Algorithm: Boundary Points

• Display: Display (none|iter|final)
• MaxFunEvals: Maximum function evaluations (int: [1,Inf])
• MaxIter: Maximum iterations (int: [1,Inf])
• TolFun: Function tolerance (numeric: [1e-012,Inf])
• TolX: Variable tolerance (numeric: [1e-012,Inf])
• TolCon: Constraint tolerance (numeric: [1e-012,Inf])

Star-shaped

Algorithm: Constraint Fitting

SpecialPointOptions: Special Points (mbcmodel.fitalgorithm)

BoundaryPointOptions: Boundary Points (mbcmodel.fitalgorithm)

1 Commands

1-42

ConstraintFitOptions: Constraint Fit (mbcmodel.fitalgorithm)

Star-shaped—Special Points

Algorithm: Star-shaped Points

CenterAlg: Center (mbcmodel.fitalgorithm)

Algorithm alternatives: 'Mean', 'Median', 'Mid Range', 'Min Ellipse', 'User Defined'

For User Defined only: CenterPoint: User-defined center [X1,X2] (vector: NumberOfActiveInputs)

Star-shaped—Boundary Points

You can choose to find boundary points (use Interior) or to assume that all points are on the
boundary (use Boundary Only). The interior algorithm then has manual and auto options for the
dilation radius and ray casting algorithms.

• Algorithm: Boundary Only (no further options)
• Algorithm: Interior. Further options:

• DilationRadius (mbcmodel.fitalgorithm)

• Algorithm: Auto
• Algorithm: Manual

• radius: Radius (numeric: [0,Inf])
• RayCasting (mbcmodel.fitalgorithm)

• Algorithm: From data
• Algorithm: Manual

• nrays: Number of Rays (int: [1,Inf])

Star-shaped—Constraint Fit

Algorithm: Star-shaped RBF Fit

Further options:

• Transform (None|Log|McCallum)
• KernelOpts: RBF Kernel (mbcmodel.fitalgorithm)

Kernel algorithms can be: wendland, multiquadric, recmultiquadric, gaussian, thinplate,
logisticrbf. linearrbf, cubicrbf.

You can specify widths and continuity as sub-properties of particular RBF kernels.

• You can set widths for wendland, multiquadric, recmultiquadric, gaussian, logisticrbf. Width:
RBF Width (numeric: [1.49012e-008,Inf])

You can set Continuity for wendland. Cont: RBF Continuity (0|2|4|6)

RbfOpts: RBF Algorithm (mbcmodel.fitalgorithm)

Algorithm: Interpolation. The following are additional settings for interpolating RBF.

 CreateAlgorithm

1-43

• CoincidentStrategy: Coincident Node Strategy (Maximum|Minimum|Mean)
• Algorithm: Algorithm (Direct|GMRES|BICG|CGS|QMR)
• Tolerance: Tolerance (numeric: [0,Inf])
• MaxIt: Maximum number of iterations (int: [1,Inf])

Examples
First get a fitalgorithm object, F, from a model:

M = mbcmodel.CreateModel('Polynomial', 4);
F = M.FitAlgorithm

F =
Algorithm: Least Squares
Alternatives: 'Minimize PRESS','Forward Selection','Backward
Selection','Prune'
1x1 struct array with no fields.

Then, to create a new algorithm type:

Alg = CreateAlgorithm(F, 'Minimize PRESS')

Alg =
Algorithm: Minimize PRESS
Alternatives: 'Least Squares','Forward Selection','Backward
Selection','Prune'
 MaxIter: 50

The AlgorithmName determines what properties you can set. You can display the properties for an
algorithm as follows:

>> model.FitAlgorithm.properties

Algorithm: Minimize PRESS
Alternatives: 'Least Squares','Forward Selection','Backward
Selection','Prune'
 MaxIter: Maximum Iterations (int: [1,1000])

As a simpler alternative to using CreateAlgorithm, you can assign the algorithm name directly to
the algorithm. For example:

B.FitAlgorithm.BoundaryPointOptions = 'Boundary Only';

Or:

m.FitAlgorithm = 'Minimize PRESS';

Case and spaces are ignored.

See Also
getAlternativeNames | SetupDialog | FitAlgorithm

Introduced in R2007a

1 Commands

1-44

CreateAlternativeModels
Create alternative models from model template

Syntax
R = CreateAlternativeModels(R, modeltemplate, criteria)

R = CreateAlternativeModels(R, modellist, criteria)

R = CreateAlternativeModels(R, LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)

Description
This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

This is the same as the Build Models function in the Model Browser GUI. A selection of child node
models are built. The results depend on where you call this method from. Note that the hierarchical
model is automatically constructed when CreateAlternativeModels is called for a local model.

• This option makes alternative response feature models for each response feature.

R = CreateAlternativeModels(R, models, criteria)

• Models is the list of models. You can use a model template file (.mbm) created in the Model
Browser, or a cell array of mbcmodel.model objects.

• Criteria is the selection criteria for best model (from the statistics available from
AlternativeModelStatistics).

• This option makes alternative local models as well as alternative response feature models.

R = CreateAlternativeModels(R,
LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)

• LocalModels is the list of local models - you must pass in an empty matrix).
• LocalCriteria is 'Two-Stage RMSE'.
• GlobalModels is the list of global models (from the model template).
• GlobalCriteria is the selection criteria for best model.

You construct a model template file (such as 'mymodels.mbm') in the Model Browser. From any
response (global or one-stage model) with alternative responses (child nodes), select Model > Make
Template. You can save the child node model types of your currently selected modeling node as a
model template. Alternatively from any response click Build Models in the toolbar and create a
series of alternative response models in the dialog.

Examples
mymodels = 'mymodels.mbm';
mlist = {};

 CreateAlternativeModels

1-45

load('-mat', mymodels);
criteria = 'PRESS RMSE';
CreateAlternativeModels(R, [], 'Two-Stage RMSE', mlist,
criteria);

Note that the model template contains the variable mlist.
CreateAlternativeModels(RESPONSE, 'alternative_models.mbm', 'Weighted PRESS')

creates alternative response feature models based upon the model template file
alternative_models.mbt, and chooses the best model based upon each model's Weighted PRESS
statistic.

See Also
AlternativeModelStatistics

Introduced before R2006a

1 Commands

1-46

CreateBoundary
Create boundary model

Syntax
B = mbcboundary.CreateBoundary(Type,Inputs)
B = mbcboundary.CreateBoundary(Type,Inputs,Property,Value,...)
B = CreateBoundary(Tree)
B = CreateBoundary(Tree,Type)
B = CreateBoundary(Tree,Type,Property,Value,...)
newboundary = CreateBoundary(B,Type)
newboundary = CreateBoundary(B,Type,Property,Value,...)

Description
B = mbcboundary.CreateBoundary(Type,Inputs) This syntax is a static package function that
creates an mbcboundary.Model object (B) of the specified Type, where Inputs is an
mbcmodel.modelinput object. Use this function to create a new boundary model object
independent of any project. See fit for an alternative.

B = mbcboundary.CreateBoundary(Type,Inputs,Property,Value,...) creates a boundary
with the specified properties. Properties depend on the boundary model type.

You can use getAlternativeTypes to get a list of valid model types, or see Type (for boundary
models). Spaces and case in Type are ignored.

CreateBoundary is also a method of mbcboundary.Tree. Use the method to create a new
boundary model within a project.

B = CreateBoundary(Tree) creates a new boundary model, B, from the mbcboundary.Tree
object, Tree. The method uses the test plan inputs to define the boundary model inputs. You must call
Addto add the new model to the tree.

B = CreateBoundary(Tree,Type) creates a new boundary model, B of the specified Type.

B = CreateBoundary(Tree,Type,Property,Value,...) creates a boundary with the specified
properties.

CreateBoundary is also a method of mbcboundary.AbstractBoundary and all its subclasses. Use
the method to create a new boundary model from an existing boundary model.

newboundary = CreateBoundary(B,Type) creates a new boundary model, newboundary, with
the same inputs as the current boundary model B. You can get a list of valid types with
getAlternativeTypes.

newboundary = CreateBoundary(B,Type,Property,Value,...) creates a new boundary
model with specified properties.

 CreateBoundary

1-47

Examples
You can create a boundary model outside of a project in either of the following ways:

B = mbcboundary.Fit(Data,Type);

B = mbcboundary.CreateBoundary(Type,Inputs)

To create a new boundary model within a project:

Tree = testplan.Boundary
B = CreateBoundary(Tree)

This creates a new boundary model, B, from the mbcboundary.Tree object, Tree. The method uses
the test plan inputs to define the boundary model inputs.

To create a star-shaped global boundary model for a testplan:

B = CreateBoundary(testplan.Boundary.Global,'Star-shaped');

Call Add to add the boundary model to the tree. .

To add the boundary model to the test plan, and fit the boundary model:

B = Add(testplan.Boundary.Global,B);

The best boundary model for the tree includes this boundary model.

To create boundary models for a point-by-point test plan:

B = TP.Boundary.Local.CreateBoundary('Point-by-point');
% Use convex hull type for the local boundaries
B.LocalModel = CreateBoundary(B.LocalModel,'Convex hull');
% Add point-by-point boundary model to project.
TP.Boundary.Local.Add(B);

See Also
Type (for boundary models) | fit | getAlternativeTypes | mbcboundary.Model |
mbcboundary.Tree

Introduced in R2009b

1 Commands

1-48

CreateCandidateSet
Create candidate set for optimal designs

Syntax
D = CreateCandidateSet(D)
D = CreateCandidateSet(D,prop1,value1,...)

Description
CreateCandidateSet is a method of mbcdoe.design. Candidate sets are very similar to design
generators. They are not used directly in specifying a design but are used to specify the set of all
possible points to be considered as part of an optimal design. You obtain the candidate set from an
optimal design generator or by using mbcdoe.design.CreateCandidateSet.

D = CreateCandidateSet(D) creates a candidate set (mbcdoe.candidateset object) for the
design.

D = CreateCandidateSet(D,prop1,value1,...) creates a candidate set with the specified
properties for the design. To see the properties you can set, see the table of candidate set properties,
Candidate Set Properties (for Optimal Designs).

Examples
CandidateSet = augmentedDesign.CreateCandidateSet('Type',...
 'Grid');
CandidateSet.NumberOfLevels = [21 21 21 21];

See Also
Properties (for candidate sets) | Augment

Introduced in R2008a

 CreateCandidateSet

1-49

CreateConstraint
Create design constraint

Syntax
c = CreateConstraint(D)
c = CreateConstraint(D,prop1,val1,...)

Description
CreateConstraint is a method of mbcdoe.design.

Designs have a Constraints property, initially this is empty:

constraints = design.Constraints

constraints =
0x0 array of mbcdoe.designconstraint

Use CreateConstraint to form constraints.

c = CreateConstraint(D) creates a default constraint for the design.

c = CreateConstraint(D,prop1,val1,...) creates a constraint with the specified properties.
See Constraint Properties.

By default a 1D table constraint is created for designs with two or more inputs.

For a design with one input a linear constraint is created by default.

You can specify the constraint type during creation by using the Type property, e.g.,

c = CreateConstraint(D,'Type','Linear')

Other available properties depend on the design type. See the table Constraint Properties.

This method does not add the constraint to the design. You must explicitly add the constraint to the
design using the Constraints property of the design e.g.,

D = AddConstraint(D,c)

or

D.Constraints(end+1) = c;

You must call AddConstraint to apply the constraint and remove design points outside the
constraint.

Examples
To create a Linear constraint, add it to a design, and regenerate the design points:

1 Commands

1-50

cLinear = CreateConstraint(design,'Type','Linear');
cLinear.A = [-2.5e-4, 1];
cLinear.b = 0.25;
cLinear
design.Constraints = cLinear;
design = Generate(design);

To create and apply a 1D Table constraint:

cTable1d = CreateConstraint(design,'Type','1D Table');
cTable1d.Table = [0.9 0.5];
cTable1d.Breakpoints = [500 6000];
cTable1d
design.Constraints = cTable1d;
design = Generate(design);

To combine constraints, use an array of the constraints you want to apply:

design.Constraints = [cLinear, cTable1d];
constraints = design.Constraints
design = Generate(design);

constraints =
1x2 array of mbcdoe.designconstraint
Linear design constraint: -0.00025*N + 1*L <= 0.25
1D Table design constraint: L(N) <= Lmax

To load boundary constraints from another project file and add to design:

otherProject = mbcmodel.LoadProject([matlabroot,'\toolbox\',...
'mbc\mbctraining\Gasoline_project.mat']);
mytestplan = otherProject.Testplans(1);
boundaryConstraints = BoundaryModel(mytestplan,'global');
Design.Constraints = boundaryConstraints;

See Also
Properties (for design constraints) | AddConstraint

Introduced in R2008a

 CreateConstraint

1-51

CreateData
Create data object

Syntax
D = CreateData(P)

D = CreateData(P,filename)

D = CreateData(P,table)

D = CreateData(P,mbcdatastructure)

D = CreateData(P,filename,filetype)

Description
The first syntax is a method of mbcmodel.project. Use this to create a new data object in an
existing project. P is the project object.

filename is a character vector specifying the full path to the file.

table is the table object.

mbcdatastructure is the MBC data structure.

filetype is a character vector specifying the file type. See DataFileTypes for the specification of
allowed file types (and mbccheckindataloadingfcn to specify your own data loading function). If
filetype is not provided, then MBC will attempt to infer the file type from the file extension, i.e. if
the file extension is .xls then MBC will try the Excel File Loader.

If filename is not provided then no data will be loaded into the new data object. Data can be loaded
subsequently using ImportFromFile, provided that editing of the data object has been enabled via a
call to BeginEdit. Call CommitEdit to apply edits.

If you create the data object specifying a filename, then the Name property is set to the filename.
However, if you use ImportFromFile after creation to load data from a file, the name of the data
object does not change.

The second syntax is a function. Use this to create a new data object independent of any project. You
can use AttachData to use the data object in another test plan, e.g.,

d = mbcmodel.CreateData(filename);
testplan.AttachData(d);

Examples
data = CreateData(P, 'D:\MBCWork\data1.xls');
D = mbcmodel.CreateData;
D = mbcmodel.CreateData('D:\MBCWork\data.xls');

Where P is an mbcmodel.project object.

1 Commands

1-52

See Also
DataFileTypes | BeginEdit | CopyData | RemoveData | Data | ImportFromFile | CommitEdit |
AttachData

Introduced before R2006a

 CreateData

1-53

CreateDesign
Create design object for test plan or model

Syntax
D = CreateDesign(Testplan)
D = CreateDesign(Testplan,Level)
D = CreateDesign(Testplan,Level,prop1,value1,...)
D = CreateDesign(Model)
D = CreateDesign(Model,prop1,value1,...)
D = CreateDesign(Inputs)
D = CreateDesign(Inputs,prop1,value1,...)
D = CreateDesign(Design)

Description
CreateDesign is a method of mbcmodel.testplan, mbcmodel.model, and
mbcmodel.modelinput. Property value pairs can be specified at creation time. The property value
pairs are properties of mbcdoe.design.

Properties of mbcdoe.design

mbcdoe.design Property Description
Constraints on page 1-33 Constraints in design.
Generator on page 1-88 Design generation options.
Inputs on page 1-104 Inputs for design.
Model on page 1-142 Model for design.
Points on page 1-174 Matrix of design points.
PointTypes on page 1-175 Fixed and free point status.
Style on page 1-230 Style of design type.
NumInputs on page 1-157 Read-only — Number of model inputs.
NumberOfPoints on page 1-159 Read-only — Number of design points.
Type on page 1-239 Design type.

The design property Type can only be specified
with CreateDesign and is subsequently read-
only for design objects.

D = CreateDesign(Testplan) creates a design for the test plan, where Testplan is an
mbcmodel.testplan object.

D = CreateDesign(Testplan,Level) creates a design for the specified level of the test plan. By
default the level is the outer level (i.e., Level 1 for one-stage, Level 2 (global) for two-stage).

If you do not specify any properties, the method creates a default design type. The default design
types are a Sobol Sequence for two or more inputs, and a Full Factorial for a single input.

1 Commands

1-54

D = CreateDesign(Testplan,Level,prop1,value1,...) creates a design with the specified
properties.

D = CreateDesign(Model) creates a design based on the inputs of the mbcmodel.model object,
Model.

D = CreateDesign(Model,prop1,value1,...) creates a design with the specified properties
based on the inputs of the model.

D = CreateDesign(Inputs) creates a design based on the inputs of the mbcmodel.modelinput
object, Inputs.

D = CreateDesign(Inputs,prop1,value1,...) creates a design with the specified properties
based on the inputs.

D = CreateDesign(Design) creates a copy of an existing design.

Examples
To create a space-filling design for a test plan TP:

sfDesign = CreateDesign(TP, ...
 'Type', 'Latin Hypercube Sampling',...
 'Name', 'Space Filling');

Create an optimal design based on the inputs of a model:

optimalDesign = CreateDesign(model,...
 'Type', 'V-optimal',...
 'Name', 'Optimal Design');

Create a classical full factorial design based on the inputs defined by a mbcmodel.modelinput
object:

design = CreateDesign(inputs, 'Type', 'Full Factorial');

Create a new design based on an existing design (ActualDesign) in order to augment it:

augmentedDesign = ActualDesign.CreateDesign('Name',...
 'Augmented Design');

Create a local level design for the two-stage test plan TP:

localDesign = TP.CreateDesign(1,'Type',...
'Latin Hypercube Sampling');

Create a global level design for the two-stage test plan TP:

globalDesign = TP.CreateDesign(2, 'Type',...
 'Latin Hypercube Sampling');

See Also
Generate | modelinput

Introduced in R2008a

 CreateDesign

1-55

CreateModel
Create new model

Syntax
M = mbcmodel.CreateModel(Type, INPUTS)
NewModel = CreateModel(model,Type)

Description
M = mbcmodel.CreateModel(Type, INPUTS) This syntax is a function that creates an
mbcmodel.model object of the specified Type.

mbcmodel.linearmodel and mbcmodel.localmodel are subclasses of mbcmodel.model. Model
types that begin with the word “local” specify an mbcmodel.localmodel object.

NewModel = CreateModel(model,Type) This syntax is a function that creates a new model (of
the specified Type) with the same inputs as an existing model. model is an mbcmodel.model object.
You can use getAlternativeTypes to generate a list of valid model types. See Type (for models) for
a list of valid model types. Spaces and case in Type are ignored.

INPUTS can be a mbcmodel.modelinput object, or any valid input to the mbcmodel.modelinput
constructor. See modelinput.

Examples
To create a hybrid spline with four input factors, enter:

M = mbcmodel.CreateModel('Hybrid Spline', 4)

To create an RBF with four input factors, enter:

Inputs = mbcmodel.modelinput('Symbol',{'N','L','EXH','INT'}',...
 'Name',{'ENGSPEED','LOAD','EXHCAM','INTCAM'}',...
 'Range',{[800 5000],[0.1 1],[-5 50],[-5 50]}');

RBFModel = mbcmodel.CreateModel('RBF', Inputs);

To create a polynomial with the same input factors as the previously created RBF, enter:

PolyModel = CreateModel(RBFModel,'Polynomial')

See Also
getAlternativeTypes | modelinput | CreateProject | CreateData | Type (for models)

Introduced in R2007a

1 Commands

1-56

CreateProject
Create project object

Syntax
P = mbcmodel.CreateProject

Description
This is a function that creates an mbcmodel.project object.

P is the project object.

P = mbcmodel.CreateProject creates an mbcmodel.project called Untitled. P =
mbcmodel.CreateProject(NAME) creates an mbcmodel.project called NAME.

Examples
P = mbcmodel.CreateProject;

Create a project called MBT_Project:

P = mbcmodel.CreateProject('MBT_Project');

Introduced before R2006a

 CreateProject

1-57

CreateResponse
Create new response model for test plan

Syntax
R = CreateResponse(T, Varname)
R = CreateResponse(T, Varname, Model)
R = CreateResponse(T, Varname, LocalModel, GlobalModel)
R = CreateResponse(T, Varname, LocalModel, GlobalModel, DatumType)

Description
This is a method of mbcmodel.testplan.

R = CreateResponse(T, Varname) creates a model of the variable Varname using the test plan's
one- or two-stage default models. T is the test plan object, R is the new response object.

R = CreateResponse(T, Varname, Model) creates a one-stage model of Varname, where T
must be a one-stage test plan object.

R = CreateResponse(T, Varname, LocalModel, GlobalModel) or R =
CreateResponse(T, Varname, LocalModel, GlobalModel, DatumType) creates a two-stage
model of Varname. T must be a two-stage test plan object. DatumType can only be specified if the
local model type permits a datum model. Only the model types “Polynomial Spline” and “Polynomial
with Datum” permit datum models.

Varname is the variable name for the new response.

Model is the One-stage model object (if you leave this field empty, the default is used).

LocalModel is the Local Model object (if you leave this field empty, the default is used).

GlobalModel is the Response Feature model object (if you leave this field empty, the default is used).

DatumType can be 'None' 'Maximum' 'Minimum' or 'Linked'.

Examples
To create a response using the default models, enter:

R = CreateResponse(T, 'torque');
TQ_response = CreateResponse(testplan, 'TQ');

To create a response and specify the local and global model types, enter:

models = T.DefaultModels
LocalModel = CreateModel(models{1}, 'Local Polynomial Spline');
GlobalModel = CreateModel(models{2}, 'RBF');
R = CreateResponse(T, 'TQ', LocalModel, GlobalModel, 'Maximum')

1 Commands

1-58

See Also
Responses

Introduced before R2006a

 CreateResponse

1-59

CreateResponseFeature
Create new response feature for local model

Syntax
RF = CreateResponseFeature(RF,RFType)
RF = CreateResponseFeature(RF,RFType,EvaluationPoint)

Description
This is a method of mbcmodel.localresponse.

RF = CreateResponseFeature(RF,RFType) creates a response feature for RFType.

RF = CreateResponseFeature(RF,RFType,EvaluationPoint) creates a response feature for
RFType at EvaluationPoint.

RFType is a description character vector belonging to the set of alternative response features for the
current local model.

EvaluationPoint is a row vector with an element for each model input and is used for response
features that require an input value to evaluate the response feature (e.g., function evaluation,
derivatives). It is an error to specify an evaluation point for a response feature type that does not
require an evaluation point.

You should use this method to add response features without refitting all local and global models.

Examples
RF = CreateResponseFeature(RF,'Beta_1')

See Also
ResponseFeatures(Local Model)

Introduced in R2007b

1 Commands

1-60

CreateTestplan
Create new test plan

Syntax
T = CreateTestplan(P,TestPlanTemplate)
T = CreateTestplan(P,TestPlanTemplate,newtestplanname)
T = CreateTestplan(P,InputsPerLevel)
T = CreateTestplan(P,InputsPerLevel,newtestplanname)
T = CreateTestplan(P, Inputs)
T = CreateTestplan(P, Inputs, newtestplanname)

Description
This is a method of the mbcmodel.project object.

You can use this method with a test plan template or input information.

You set templates up in the Model Browser GUI. This setup includes number of stages, inputs, base
models, and designs. If the test plan is used as part of a previous project it is also possible to save
response models in the test plan. It is not possible to change the number of stages after creation of
the test plan.

After you create a new test plan, you can add data to model, and new responses. Note that the model
input signal names specified in the template must match the signal names in the data.

Use CreateTestplan in the following ways:

T = CreateTestplan(P,TestPlanTemplate) creates a test plan.

T = CreateTestplan(P,TestPlanTemplate,newtestplanname) creates a test plan with a
name.

P is the project object.

TestPlanTemplate is the full name and path to the test plan template file created in the Model
Browser.

newtestplanname is the optional name for the new test plan object.

T = CreateTestplan(P,InputsPerLevel) creates a test plan with the number of inputs per
level.

T = CreateTestplan(P,InputsPerLevel,newtestplanname) creates a test plan with the
inputs per level and a name.

InputsPerLevel is a row vector with number of inputs for each stage.

T = CreateTestplan(P, Inputs) creates a test plan with the number of inputs.

T = CreateTestplan(P, Inputs, newtestplanname) creates a test plan with the number of
inputs and a name.

 CreateTestplan

1-61

Inputs is a cell array with input information for each level. The input information can be specified as
a cell array of mbcmodel.modelinput objects (one for each level), or as a cell array of cell arrays
(one for each level).

Examples
To create a test plan using a test plan template, enter:

T = CreateTestplan(P1, 'd:\MBCwork\TQtemplate1', 'newtestplan')

testplan = CreateTestplan(P, 'example_testplan')

To create a test plan using inputs per level, enter:

T = P.CreateTestplan([1,2])

To specify the input information in a cell array of mbcmodel.modelinput objects, enter:

% Define Inputs for test plan
LocalInputs = mbcmodel.modelinput('Symbol','S',...
 'Name','SPARK',...
 'Range',[0 50]);
GlobalInputs = mbcmodel.modelinput('Symbol',{'N','L','ICP',...
'ECP'},'Name',{'SPEED','LOAD','INT_ADV','EXH_RET'},...
 'Range',{[500 6000],[0.0679 0.9502],[-5 50],[-5 50]});
% create test plan
testplan = CreateTestplan(project, {LocalInputs,...
GlobalInputs});

Or

T = P.CreateTestplan({LocalInputs,GlobalInputs})

To specify the input information in a cell array, enter:

localInputs = {'S',0,50,'','SPARK'};
globalInputs = {'N', 800, 5000, '', 'ENGSPEED'
 'L', 0.1, 1, '', 'LOAD'
 'EXH', -5, 50, '', 'EXHCAM'
 'INT', -5, 50, '', 'INTCAM'};

T = CreateTestplan(P,{localInputs,globalInputs});

See Also
AttachData | CreateResponse | Responses | Data | Levels | InputSignalNames |
InputsPerLevel | Inputs | modelinput

Introduced before R2006a

1 Commands

1-62

Data
Array of data objects in project, boundary tree, or test plan

Syntax
allD = project.Data
allD = testplan.Data

Description
This is a property of mbcmodel.project, mbcmodel.testplan, and mbcboundary.Tree.

For projects and test plans, it returns an array of mbcmodel.data objects. A project can have many
data objects, but a test plan can only have one or none.

Tree.B.Data returns a double matrix for one-stage, response, and global boundary models. For local
boundary models, Data is a cell array of double matrices with one cell per test. For boundary models,
Data is read-only.

Examples
allD = P.Data;

For a project object P, this example returns an nx1 array of all the data objects.

allD = T.Data;

For the test plan object T, this example returns a 1x1 array if the test plan has a data object attached,
and 0x1 otherwise.

See Also
CreateData | RemoveData | CopyData

 Data

1-63

DataFileTypes
Data file types

Syntax
f = mbcmodel.DataFileTypes

Description
This is a function to return a list of data file types for mbcmodel.

Examples
f = mbcmodel.DataFileTypes

f =

 Columns 1 through 4
 'Excel file' 'FT/DB data files' 'Delimited Text File'
 [1x25 char]
 Column 5
 'MATLAB Data File'

See Also
ImportFromFile | CreateData

Introduced in R2007a

1 Commands

1-64

DefaultModels
Default models for test plan

Syntax
testplan.DefaultModels

Description
This is a read-only property of mbcmodel.testplan. It returns a cell array of mbcmodel.model
objects (one array for each stage).

Examples
To get the default model objects for use in creating a response, enter:

models = T.DefaultModels
LocalModel = CreateModel(models{1}, 'Local Polynomial Spline');
GlobalModel = CreateModel(models{2}, 'RBF');
R = CreateResponse(T, 'TQ', LocalModel, GlobalModel, 'Maximum')

See Also
CreateResponse | modelinput

 DefaultModels

1-65

DefineNumberOfRecordsPerTest
Define exact number of records per test

Syntax
D = DefineNumberOfRecordsPerTest(D, number, testnumAlias)

Description
This is a method of mbcmodel.data.

You can use this to set one test per record for one-stage modeling.

number is the input specifying the number of records to include in each test. Most usually this will be
used to specify one test per record.

testnumAlias is an optional character vector input to define the SignalName that should be used
as the testnumber within MBC. Defaults to the index of the test.

Note testnumaAias uses the first record in the test as the testnumber, and testnumbers are unique
so any duplicates will be modified.

Examples
DefineNumberOfRecordsPerTest(D, 1);
DefineNumberOfRecordsPerTest(D, 10, 'MYLOGNO');

See Also
DefineTestGroups

Introduced before R2006a

1 Commands

1-66

DefineTestGroups
Define rule-based test groupings

Syntax
D = DefineTestGroups(D, variables, tolerances, testnumAlias,
reorder)

Description
This is a method of mbcmodel.data.

You can impose rules to collect records of the current dataset (D) into groups; these groups are
referred to as tests. Test groupings are used to define hierarchical structure in the data for two-stage
modeling.

Select a variable or variables to group by and set tolerances. The tolerance is used to define
groups: on reading through the data, when the value of any specified variable changes by more than
the tolerance, a new group is defined.

variables is the input cell array of character vectors holding the SignalNames on which to define
the test groupings.

tolerances is the input double array of the same length as variables holding the required
tolerances for the test grouping definition.

testnumAlias is an optional character vector input to define the SignalName that should be used
as the testnumber within MBC. Defaults to the index of the test.

Note testnumAlias uses the first record in the test as the testnumber, and testnumbers are unique
so any duplicates will be modified.

reorder is an optional Boolean indicating that the data should be reordered within the dataset.
Defaults to false.

See the section on Test Groupings (under Data) in the Model Browser User's Guide for more
information on these inputs.

Examples
DefineTestGroups(D, {'AFR' 'RPM'}, [0.1 30], 'MYLOGNO', false);

See Also
DefineNumberOfRecordsPerTest | NumberOfTests

Introduced before R2006a

 DefineTestGroups

1-67

designconstraint
Convert boundary model to design constraint

Syntax
C = designconstraint(C)

Description
This is a method of mbcboundary.AbstractBoundary and all its subclasses (e.g.,
mbcboundary.Model).

C = designconstraint(C) converts the boundary model C to an mbcdoe.designconstraint
object. Convert boundary models to use them as a design constraint. You cannot convert the
boundary model to a design constraint until it is fitted (Fitted=true).

You can also call mbcdoe.design.AddConstraint directly and the method converts the boundary
model object to a mbcdoe.designconstraint object.

See Also
AddConstraint

Introduced in R2009b

1 Commands

1-68

Designs
Designs in test plan

Syntax
D = T.Designs

Description
Designs is a property of mbcmodel.testplan.

D = T.Designs returns a cell array of designs in the test plan, T, one element for each level.

When using designs at the command line, designs are treated as an array. In the Design Editor you
can build a design tree, where child designs inherit characteristics such as constraints from the
parent design. At the command line you can copy and modify designs. By default, designs are added
to the top level of the design tree. To build tree structures at the command line, you can use the
Parent argument of the AddDesign method to specify the parent design in the design tree. The tree
structure cannot be used at the command line any further, but you can use the design tree in the
Design Editor after you load the project into the Model Browser.

Examples
To get local designs only:

LocalDesigns = T.Designs{1}

To get global designs only:

GlobalDesigns = T.Designs{2}

To get the fifth global design:

D = T.Design {2}(5)

After modifying the design, you must call UpdateDesign, or reassign to the test plan as follows:

T.Design {2}(5) = D

See Also
UpdateDesign

 Designs

1-69

DetachData
Detach data from test plan

Syntax
T = DetachData(T)

Description
This is a method of mbcmodel.testplan.

T is the test plan object. A test plan can only use a single dataset, so you do not need to specify the
data object.

Examples
DetachData(T1);

See Also
AttachData

Introduced before R2006a

1 Commands

1-70

DiagnosticStatistics
Diagnostic statistics for response

Syntax
S = DiagnosticStatistics(R)
S = DiagnosticStatistics(R, Stats)
S = DiagnosticStatistics(LocalR, TestNumbers)
S = DiagnosticStatistics(LocalR, TestNumbers, Stats)

Description
This is a method of the local and response model objects, mbcmodel.localresponse and
mbcmodel.response.

The options available are model-specific and are the same options shown in the drop-down menus of
the scatter plots (the top plots) in the local and global (response feature) model views of the toolbox
GUI.

S = DiagnosticStatistics(R) returns S, a structural array containing Statistics and Names
fields. R is the response or local response model object.

S = DiagnosticStatistics(R, Stats) allows you to specify Stats, an optional input that
defines which diagnostic statistics you want from the available list. If you don't specify Stats, you
get all available statistics.

S = DiagnosticStatistics(LocalR, TestNumbers) returns S for LocalR, a local response
object, and Testnumbers specifies the index into tests for local or hierarchical models.

Use S = DiagnosticStatistics(LocalR, TestNumbers, Stats) to specify which diagnostic
statistics you want from the available list.

A row is set to NaN if that point is removed.

Examples
studentRes = DiagnosticStatistics(local, tn, 'Studentized
residuals');

See Also
SummaryStatistics | AlternativeModelStatistics

Introduced before R2006a

 DiagnosticStatistics

1-71

Discrepancy
Discrepancy value

Syntax
s = Discrepancy(D)

Description
Discrepancy is a method of mbcdoe.design.

s = Discrepancy(D) returns the discrepancy, which is a measure of the deviation from the
average point density. Discrepancy is defined over the unconstrained design and is only available
for space-filling designs.

See Also
Maximin | Minimax

Introduced in R2008a

1 Commands

1-72

DoubleInputData
Data being used as input to model

Syntax
X = DoubleInputData(R, TestNumber)

Description
This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response. It returns an array (X) containing the input
data used for fitting the model.

R is the response model object.

TestNumber is an optional input to specify the tests you want.

Examples
X = DoubleInputData(R);
x = DoubleInputData(local, tn);

See Also
DoubleResponseData

Introduced before R2006a

 DoubleInputData

1-73

DoubleResponseData
Data being used as output to model for fitting

Syntax
Y = DoubleResponseData(R, TestNumber)

Description
This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response. It returns an array (Y) containing the
response data used for fitting the model.

R is the response model object.

TestNumber is an optional input to specify the tests you want.

Examples
Y = DoubleResponseData(R);
y = DoubleResponseData(local, tn);

See Also
DoubleInputData

Introduced before R2006a

1 Commands

1-74

Evaluate
Evaluate model, boundary model, or design constraint

Syntax
Y = Evaluate(M, X)
Y = Evaluate(C, X)
Y = Evaluate(B, X)

Description
This is a method of mbcmodel.model,mbcdoe.designconstraint, and boundary model object
mbcboundary.AbstractBoundary and all its subclasses.

Y = Evaluate(M, X) evaluates the model M at X.

Y = Evaluate(C, X) evaluates the design constraint C at X (negative results are within the
constraint).

Y = Evaluate(B, X) evaluates the boundary model B at X. X is a matrix with B.NumInputs
columns. All boundaries use the form g(x)=0. A positive value indicates that the point is outside the
boundary. The method cannot evaluate a boundary model until it is fitted.

X is a (numpoints-by-nfactors) array.

Y is a (numpoints-by-1) array.

See Also
PredictedValue | PEV

Introduced in R2007a

 Evaluate

1-75

Export
Make command-line or Simulink export model

Syntax
ExportedModel = Export(MODEL)
ExportedModel = Export(MODEL, Format)

Description
This is a method of these model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse, mbcmodel.response and mbcmodel.model.

ExportedModel = Export(MODEL) exports the model to MATLAB software. ExportedModel is an
xregstatsmodel object, that you can use to evaluate the model and calculate the prediction error
variance. If you convert an mbcmodel.localresponse object and you have not created a two-stage
model (hierarchical response object), then the output is an mbcPointByPointModel object that you
can use to evaluate the model and calculate the prediction error variance.

ExportedModel = Export(MODEL, Format) exports the model in the specified format, which can
be 'MATLAB' or 'Simulink'.

Format must be 'MATLAB' or 'Simulink'; an error will be thrown if this is incorrect.

You can evaluate models exported to the MATLAB workspace in the same way as when you export
them from the Model Browser. You can save these models as a *.mat file and load them into CAGE.

Model is the object containing the response models from the node you are exporting from.

Examples
M = Export(R2, 'MATLAB');
mbt_model = Export(maxTQ, 'MATLAB');

See Also
xregstatsmodel

Introduced before R2006a

1 Commands

1-76

ExportToMBCDataStructure
Export data to MBC data structure

Syntax
mbcStruct = ExportToMBCDataStructure(D)

Description
This is a method of mbcmodel.data.

It converts the specified data object (D) to the MBC Data Structure format.

An MBC Data Structure is a structure array that contains the following fields:

• varNames is a cell array of character vectors that hold the names of the variables in the data (1xn
or nx1).

• varUnits is a cell array of character vectors that hold the units associated with the variables in
varNames (1xn or nx1). This array can be empty, in which case no units are defined.

• data is an array that holds the values of the variables (m x n).
• comment is an optional character vector holding comment information about the data.

Examples
X = ExportToMBCDataStructure(D1);

See Also
ImportFromMBCDataStructure

Introduced before R2006a

 ExportToMBCDataStructure

1-77

ExportToTable
Export data to table

Syntax
table = ExportToTable(D)

Description
This is a method of mbcmodel.data.

Converts the data object (D) to a table object.

Examples
table = ExportToTable(D);

See Also
CreateData | ImportFromTable

Introduced in R2019a

1 Commands

1-78

Filename
Full path to project file

Syntax
Name = P.Filename

Description
This is a property of mbcmodel.project.

Examples
Name = P.Filename;

 Filename

1-79

Filters
Structure array holding user-defined filters

Syntax
filt = D.Filters

Description
This is a property of mbcmodel.data.

It returns a structure array holding information about the currently defined filters. The array will be
the same length as the number of currently defined filters, with the following fields for each filter:

• Expression — The character vector expression as defined in AddFilter or ModifyFilter
• AppliedOK — Boolean indicating that the filter was successfully applied
• RemovedRecords — Boolean vector indicating which records the filter removed. Note that many
filters could remove the same record

• Message — Character vector holding information on the success or otherwise of the filter

Examples
filt = D.Filters;

See Also
AddFilter | ModifyFilter | RemoveFilter

1 Commands

1-80

FindDesign
Find design by name

Syntax
D = FindDesign(T,Name)
D = FindDesign(T,Level,Name)

Description
FindDesign is a method of mbcmodel.testplan.

D = FindDesign(T,Name) finds a design with a matching name from the test plan T.

Name is a character vector or a cell array of character vectors specifying a design name.

Level is the test plan level. By default the level is the outer level (i.e., Level 1 for one-stage, Level 2
(global) for two-stage).

D = FindDesign(T,Level,Name) finds a design with a matching name from the specified level of
the test plan.

Introduced in R2008a

 FindDesign

1-81

FitAlgorithm
Fit algorithm for model or boundary model

Syntax
F = M.FitAlgorithm

Description
This is a property of mbcmodel.model, and boundary model objects
mbcboundary.AbstractBoundary and all subclasses.

An mbcmodel.model.FitAlgorithm object is contained within the FitAlgorithm property of an
mbcmodel.model object or mbcboundary object. This object has a Name property, and the following
methods: CreateAlgorithm, getAlternativeNames, IsAlternative, SetupDialog, properties.

As a simpler alternative to using CreateAlgorithm, you can assign the algorithm name directly to the
algorithm. For example:

B.FitAlgorithm.BoundaryPointOptions = 'Boundary Only';

m.FitAlgorithm = 'Minimize PRESS';

Case and spaces are ignored.

For properties, see CreateAlgorithm.

Examples
To get a fitalgorithm object, F, from a model:

M = mbcmodel.CreateModel('Polynomial', 4);
F = M.FitAlgorithm

F =
Algorithm: Least Squares
Alternatives: 'Minimize PRESS','Forward Selection','Backward
Selection','Prune'
1x1 struct array with no fields.

See Also
CreateAlgorithm | getAlternativeNames | IsAlternative | SetupDialog

1 Commands

1-82

fit
Fit model or boundary model to new or existing data, and provide summary statistics

Syntax
[model,statistics] = fit(model,X,Y)
[model,statistics] = fit(model)

Description
This is a method of mbcmodel.model and mbcboundary.Model.

[model,statistics] = fit(model,X,Y) This fits the model to the specified data. After you have
called fit specifying the data to use, then you can refit the model by calling [model,statistics]
= fit(model).

Examples
statistics = fit(knot)
statistics =
 27.0000 7.0000 1.0000 3.0184 2.6584

See Also
SummaryStatistics | UpdateResponse

Introduced before R2006a

 fit

1-83

Fitted
Indicate whether boundary model has been fitted

Syntax
Fitted(B)

Description
This is a property of mbcboundary.AbstractBoundary and all its subclasses.

Fitted(B) indicates whether boundary model B has been fitted (read only). You cannot evaluate the
boundary model unless fitted equals true.

Introduced in R2009b

1 Commands

1-84

FixPoints
Fix design points

Syntax
D = FixPoints(D)
D = FixPoints(D,indices)

Description
FixPoints is a method of mbcdoe.design.

D = FixPoints(D) fixes all points in the design.

D = FixPoints(D,indices) fixes all points specified by indices.

See Also
PointTypes | RemovePoints

Introduced in R2008a

 FixPoints

1-85

Generate
Generate new design points

Syntax
D = Generate(D)
D = Generate(D,NumPoints)
D = Generate(D,'Prop1',value1,...)

Description
Generate is a method of mbcdoe.design. The Generate method always generates a new design
and replaces the existing points (fixed or free).

D = Generate(D) regenerates the design with the current generator settings (the current design
properties and current number of points). It is possible that a different design will result (e.g., for
Latin Hypercube Sampling designs).

D = Generate(D,NumPoints) generates the number of points specified by NumPoints using the
current generator settings. You cannot specify the number of points for all design types (e.g., Central
Composite, Box Behnken) and therefore the NumPoints second input is not supported for all design
types.

D = Generate(D,'Prop1',value1,...) generates a new design with the generator specified by
the generator property value pairs.

You can use the property value pairs to specify design generator properties (such as the design Type)
as part of the Generate command, e.g.,

C = OptDesign.CreateCandidateSet(OptDesign,...
 'Type', 'Grid',...
 'NumberOfLevels',[21 21 21]);

OptDesign = Generate(OptDesign,...
 'Type','V-optimal',...
 'CandidateSet',C,...
 'MaxIterations',200,...
 'NoImprovement', 50,...
 'NumberOfPoints',200);

This is equivalent to the following code setting the properties individually and then assigning the
updated generator object to the design:

P = OptDesign.Generator;
P.Type = 'V-optimal';
P.CandidateSet.NumberOfLevels(:)=21;
P.MaxIterations = 200;
P.NumberOfPoints = 200;
P.NoImprovement = 50;
OptDesign.Generator = P;

You see an error if you try to call Generate when the design Style is User-defined or Experimental
data.

1 Commands

1-86

For space-filling designs, see also ConstrainedGenerate. Using Generate with constrained space-
filling is not guaranteed to produce a design with the specified number of points. Use
ConstrainedGenerate instead.

Examples
To generate a design with 10 points:

d = Generate(d, 10);

Note The design Type must have a writable property 'NumberOfPoints' to use this syntax D =
Generate(D,NumPoints). See Type (for designs and generators).

To create and generate a 15 point latin hypercube sampling design:

globalDesign = TP.CreateDesign(2, 'Type',...
 'Latin Hypercube Sampling');
globalDesign = Generate(globalDesign, 15)

To regenerate the design and get a different 15 point latin hypercube sampling design:

globalDesign = Generate(globalDesign);

To create and generate a halton design with 50 points:

haltonDesign = CreateDesign(inputs, 'Type',...
 'Halton Sequence', 'Name', 'Halton');
haltonDesign = Generate(haltonDesign, 'NumberOfPoints', 50);

To create and generate a halton design with specified scrambling and other properties:

haltonDesignWithScrambling = haltonDesign.CreateDesign...
('Name', 'Scrambled Halton');
haltonDesignWithScrambling = Generate...
(haltonDesignWithScrambling,
 'Scramble', 'RR2', 'PrimeLeap', true);

To create a full factorial design and specify the number of levels when generating the design:

design = CreateDesign(inputs, 'Type', 'Full Factorial');
design = Generate(design, 'NumberOfLevels', [50 50]);

See Also
Augment | CreateDesign | ConstrainedGenerate

Introduced in R2008a

 Generate

1-87

Generator
Design generation options

Syntax
D.Generator
D.Generator = NewGenerator

Description
Generator is a property of mbcdoe.design.

D.Generator returns an mbcdoe.generator object.

D.Generator = NewGenerator generates a new design based on the new design generator. Design
generators provide the properties for all the design types.

The properties you can set depend on the design Type. To view the properties for generating designs,
see Properties (for design generators).

Use getAlternativeTypes to get a list of alternative generators.

See Also
Generate | Properties (for design generators) | Type (for designs and
generators) | getAlternativeTypes

1 Commands

1-88

GetAllTerms
List all model terms

Syntax
Terms = M.Properties.GetAllTerms

Description
This is a method of mbcmodel.linearmodelproperties.

Terms = M.Properties.GetAllTerms returns a list of all terms in this model. M is an
mbcmodel.linearmodel object.

Terms is a (numterms-by-nfactors) array. The (m,n)th element is the power of the nth factor in the mth

term.

Examples
The following example creates a model, and finds which terms are quadratic in the first input factor
(X1):
model = mbcmodel.CreateModel('Polynomial', 2)

model =

 1 + 2*X1 + 8*X2 + 3*X1^2 + 6*X1*X2 + 9*X2^2 + 4*X1^3
 + 5*X1^2*X2 + 7*X1*X2^2 + 10*X2^3
 InputData: [0x2 double]
 OutputData: [0x1 double]
 Status: Not fitted
 Linked to Response: <not linked>

>>terms = model.Properties.GetAllTerms;
>>x1quadraticterms = find(terms(:,1)==2)

x1quadraticterms =

 4
 8

See Also
GetIncludedTerms

Introduced in R2007a

 GetAllTerms

1-89

getAlternativeNames
List alternative algorithm names

Syntax
F.getAlternativeNames
AltList = getAlternativeNames(F)

Description
This is a method of mbcmodel.fitalgorithm.

F.getAlternativeNames or AltList = getAlternativeNames(F) return a cell array of
alternative algorithm names. F is a mbcmodel.fitalgorithm object.

Examples
model = mbcmodel.CreateModel('Polynomial', 2);
F = model.FitAlgorithm;
altAlgs = F.getAlternativeNames

altAlgs =

 'Least Squares' 'Minimize PRESS' 'Forward Selection'
'Backward Selection' 'Prune'

See Also
CreateAlgorithm | IsAlternative

Introduced in R2007a

1 Commands

1-90

getAlternativeTypes
Alternative model or design types

Syntax
list = getAlternativeTypes(Model)
list = getAlternativeTypes(Boundary)
list = getAlternativeTypes(Design)
list = getAlternativeTypes(Design,Style)
list = getAlternativeTypes(DesignGenerator)
list = getAlternativeTypes(DesignGenerator,Style)
list = getAlternativeTypes(CandidateSet)
list = getAlternativeTypes(DesignConstraint)

Description
This is a method of

• mbcmodel.model
• All the boundary model objects: mbcboundary.AbstractBoundary and all its subclasses.
• All the design objects: mbcdoe.design, mbcdoe.generator, mbcdoe.candidateset, and

mbcdoe.designconstraint.

Models

list = getAlternativeTypes(Model) returns a cell array of alternative model types with the
same number of inputs as Model.

Boundary Models

list = getAlternativeTypes(Boundary) returns a list of boundary model types that you can
use as alternative boundary model types for the current boundary model.

Designs

list = getAlternativeTypes(Design) returns a list of design types, which you can use as
alternative designs for current design.

list = getAlternativeTypes(Design,Style) returns a list of design types of the specified
style. The design style requires a type of 'Space-Filling', 'Classical' or 'Optimal'.

Design Generators

list = getAlternativeTypes(DesignGenerator) returns a list of design generator types that
you can use as alternative designs for current design generator.

list = getAlternativeTypes(DesignGenerator,Style) returns a list of design generator
types of the specified style. The design generator style requires a type of 'Candidate
Set','Space-Filling', 'Classical' or 'Optimal'.

 getAlternativeTypes

1-91

Design Candidate Sets

list = getAlternativeTypes(CandidateSet) is a list of candidate set types that you can use
as alternative candidate sets for the current candidate set. You can obtain the candidate set from an
optimal design generator or by using mbcdoe.design.CreateCandidateSet.

Design Constraints

list = getAlternativeTypes(DesignConstraint) returns a list of design constraint types.

Examples
model = mbcmodel.CreateModel('RBF', 2);
altmodels = getAlternativeTypes(model)

This produces the output:

altmodels =

 Columns 1 through 6

 'Polynomial' 'Hybrid Spline' 'RBF' 'Polynomial-RBF'
 'Hybrid Spline-RBF' 'Multiple Linear'

 Columns 7 through 8

 'Neural Network' 'Transient'

See Also
Type (for models) | CreateModel

Introduced in R2007a

1 Commands

1-92

GetIncludedTerms
List included model terms

Syntax
Terms = M.Properties.GetIncludedTerms

Description
This is a method of mbcmodel.linearmodelproperties.

Terms = M.Properties.GetIncludedTerms returns a list of those terms that will be used to fit
the model. M is an mbcmodel.linearmodel object.

Terms is a (numincludedterms-by-nfactors) array. The (m,n)th element is the power of the nth factor in
the mth included term.

Examples
>>model = mbcmodel.CreateModel('Polynomial', 2);

>>includedterms = model.Properties.GetIncludedTerms;
>>x1quadraticterms = find(includedterms(:,1)==2)

x1quadraticterms =

 4
 8

See Also
GetAllTerms | SetTermStatus

Introduced in R2007a

 GetIncludedTerms

1-93

getLocalBoundary
Local boundary model for operating point

Syntax
getLocalBoundary(B)

Description
This is a method of mbcboundary.TwoStage.

getLocalBoundary(B) returns the definition of the local boundary model.

Introduced in R2009b

1 Commands

1-94

GetTermLabel
List labels for model terms

Syntax
Labels = M.Properties.GetTermLabel
Labels = M.Properties.GetTermLabel(Terms)
Labels = M.Properties.GetTermLabel(Terms, 'Format',OutputFormat)

Description
This is a method of mbcmodel.linearmodelproperties, which returns a user-friendly label for
one or more specified terms.

Labels = M.Properties.GetTermLabel lists the labels.

Labels = M.Properties.GetTermLabel(Terms) lists the labels with the specified terms.

Labels = M.Properties.GetTermLabel(Terms, 'Format',OutputFormat) lists the labels
with the specified terms and format.

M is an mbcmodel.linearmodel object.

The specified terms form a row where each value gives the power of that parameter. OutputFormat

can be 'List' or 'Formula'.

Examples
model = mbcmodel.CreateModel('Polynomial', 2);
model.Properties.GetTermLabel([1 2; 1 0])

produces {'X1*X2^2';'X1'} and

model.Properties.GetTermLabel([1 2; 1 0], 'Format', 'Formula')

produces 'X1*X2^2 + X1'.

See Also
GetAllTerms | GetIncludedTerms

Introduced in R2007a

 GetTermLabel

1-95

GetTermStatus
List status of some or all model terms

Syntax
Status = M.Properties.GetTermStatus
Status = M.Properties.GetTermStatus(Terms)

Description
This is a method of mbcmodel.linearmodelproperties.

Status = M.Properties.GetTermStatus returns the status of all of the terms in this model.
Status is a cell array of status character vectors. M is an mbcmodel.linearmodel object.

Status = M.Properties.GetTermStatus(Terms) returns the status of the specified terms in
this model.

The stepwise status for each term can be 'Always', 'Never' or 'Step'. The status determines whether
you can use the StepwiseRegression function to throw away terms in order to try to improve the
predictive power of the model.

Examples
model = mbcmodel.CreateModel('Polynomial', 2);

Get status of X23 term:

status = model.Properties.GetTermStatus([0 3])

status =

 'Step'

Get status of all terms linear in X1:

status = model.Properties.GetTermStatus([1 0; 1 1; 1 2])

status =

 'Step'
 'Step'
 'Step'

See Also
SetTermStatus | StepwiseStatus

Introduced in R2007a

1 Commands

1-96

Global
Global boundary model tree

Syntax
Global(B)

Description
This is a property of mbcboundary.TwoStageTree.

Global(B) The Global property contains a global boundary model tree (read only).

The toolbox fits boundary models in the global model boundary tree with one point per test (the
average value of the global variables for that test).

Introduced in R2009b

 Global

1-97

GlobalModel
Interpolating global boundary model definition

Syntax
B.GlobalModel

Description
This is a property of mbcboundary.TwoStage.

B.GlobalModel returns the definition of global boundary model. GlobalModel requires the type
Interpolating RBF.

1 Commands

1-98

ImportFromFile
Load data from file

Syntax
D = ImportFromFile(D, filename, filetype)
D = ImportFromFile(D, filename, 'Excel file', SHEETNAME)

Description
This is a method of the mbcmodel.data object.

First you must use CreateData, than BeginEdit before you can call ImportFromFile to bring data
into your new data object, D, as follows:D = ImportFromFile(D, filename, filetype) loads
data from the file.

Note that you can specify filename and filetype when you call CreateData as a shortcut for
loading data from a file. You still need to call BeginEdit before you can make changes to the data.

filename is a character vector holding the full path to the file to load.

filetype is an optional file type to load. See DataFileTypes for the specification of the allowed
file types (and mbccheckindataloadingfcn to specify your own data loading function).

Filetype defaults to 'auto' which will attempt to guess the filetype based on the extension of the file
being loaded. i.e. if the file extension is .xls then MBC will try the Excel File Loader.

D = ImportFromFile(D, filename, 'Excel file', SHEETNAME) specifies a sheet name for
an Excel file.

Examples
ImportFromFile(D, 'D:\MBCData\Raw Data\testdata.xls');

See Also
CreateData | DataFileTypes | BeginEdit | ImportFromMBCDataStructure | RemoveData |
Append

Introduced before R2006a

 ImportFromFile

1-99

ImportFromMBCDataStructure
Load data from MBC data structure

Syntax
D = ImportFromMBCDataStructure(D,mbcStruct)

Description
This is a method of mbcmodel.data.

First you must use CreateData, than BeginEdit before you can bring data into your new data
object.

An MBC data structure is a structure array that contains the following fields:

• varNames is a cell array of character vectors that hold the names of the variables in the data (1xn
or nx1).

• varUnits is a cell array of character vectors that hold the units associated with the variables in
varNames (1xn or nx1). This array can be empty, in which case no units are defined.

• data is an array that holds the values of the variables (m x n).
• comment is an optional character vector holding comment information about the data.

Examples
ImportFromMBCDataStructure(D, mbcStruct);

See Also
ImportFromFile | CreateData | BeginEdit | RemoveData | Append |
ExportToMBCDataStructure

Introduced before R2006a

1 Commands

1-100

ImportFromTable
Load data from a table object

Syntax
D = ImportFromTable(D,tableobject)

Description
This is a method of mbcmodel.data.

tableobject is a table object.

Examples
ImportFromTable(D,tableobject);

See Also
CreateData | ExportToTable

Introduced in R2019a

 ImportFromTable

1-101

InBest
Boundary models selected as best

Syntax
mbcboundary.Tree.InBest

Description
This is a property of mbcboundary.Tree and mbcboundary.TwoStageTree.

mbcboundary.Tree.InBest Specify a logical array indicating which boundary models to select as
best.

You can combine models into a single boundary model for the boundary tree. The logical array
specifies which models to include in the best boundary model. The BestModel property gives the
best boundary model for the boundary tree.

Including boundary models InBest corresponds to combining boundary models in best in the
Boundary Editor. For further information, see“Combining Best Boundary Models” in the Model
Browser documentation.

See Also
BestModel

1 Commands

1-102

InputData
Input data for model

Syntax
D = M.InputData

Description
This is a property of mbcmodel.model. It returns an array of the input variable data currently in the
model.

Examples
D = knot.InputData;

See Also
OutputData

 InputData

1-103

Inputs
Inputs for test plan, model, boundary model, design, or constraint

Syntax
testplan.Inputs

model.Inputs

design.Inputs

boundary.Inputs

Description
This is a property of mbcmodel.testplan, mbcmodel.model, mbcdoe.design,
mbcdoe.designconstraint, and boundary model object mbcboundary.AbstractBoundary and
all its subclasses.

For mbcmodel.testplan, this property returns a cell array of mbcmodel.modelinput objects (one
array for each stage). You cannot change the number of stages after creation of the test plan.

For mbcmodel.model and mbcboundary objects, this property returns an mbcmodel.modelinput
object. You cannot edit this object when it is attached to a response. You cannot change number of
inputs after creation.

In both cases, verification of valid variable names and symbols occurs before assigning inputs to
model at the command line. Names and Symbols must be unique.

Boundary model inputs use an array of mbcmodel.modelinput objects. You set the number of
boundary model inputs when you create the boundary model. You can change the name, symbol, and
range of the inputs.

For mbcdoe.design, D.Inputs = NewInputs updates the inputs. You cannot change the number
of design inputs. Many designs have Limits properties in addition to model input ranges. These
properties allow you to restrict the range of the design without changing the model or losing points
via a constraint.

See Also
CreateTestplan | modelinput

1 Commands

1-104

InputSetupDialog
Open Input Setup dialog box to edit inputs

Syntax
[NEWMODEL, OK] = InputSetupDialog(OLDMODEL)
[NEWTESTPLAN, OK] = InputSetupDialog(OLDTESTPLAN)

Description
This is a method of mbcmodel.model and mbcmodel.testplan.

[NEWMODEL, OK] = InputSetupDialog(OLDMODEL) opens the Input Setup dialog box, where you
can edit the model inputs (names, symbols, and ranges).

[NEWTESTPLAN, OK] = InputSetupDialog(OLDTESTPLAN) opens the Input Setup dialog box,
where you can edit the test plan inputs (names, symbols, and ranges).

If you click Cancel to dismiss the dialog box, OK = false and NEWMODEL = OLDMODEL. If you click
OK to close the dialog box, then OK = true and NEWMODEL is your new chosen model setup. The
new model is refitted when you click OK.

Introduced in R2007a

 InputSetupDialog

1-105

InputSignalNames
Names of signals in data that are being modeled

Syntax
inputs = A.InputSignalNames

Description
This is a property of mbcmodel.testplan and the modeling objects
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and mbcmodel.response.

A can be a test plan (T) or model (L, R, HR) object.

Examples
inputs = T.'InputSignalNames;

InputFactors = thisRF.InputSignalNames';

See Also
SignalNames

1 Commands

1-106

InputsPerLevel
Number of inputs at each level in model

Syntax
L = T.InputsPerLevel

Description
This is a property of mbcmodel.testplan.

This is a vector of length Levels. Each element defines the number of inputs at that level. See
“Understanding Model Structure for Scripting” for an explanation of the levels in a test plan.

Examples
L = T.InputsPerLevel
L =
 2 4

This answer means the test plan T has 2 local inputs and 4 global inputs.

See Also
Levels | Level

 InputsPerLevel

1-107

IsAlternative
Test alternative fit algorithm

Syntax
OK = IsAlternative(F1, F2)

Description
This is a method of mbcmodel.fitalgorithm.

OK = IsAlternative(F1, F2) tests whether F is an alternative mbcmodel.fitalgorithm for
F1.

See Also
CreateAlgorithm | getAlternativeNames

Introduced in R2007a

1 Commands

1-108

IsBeingEdited
Boolean signaling if data or model is being edited

Syntax
OK = D.IsBeingEdited

Description
This is a property of mbcmodel.data and mbcmodel.model.

This Boolean property indicates that the data or model is currently being edited.

For data, it also indicates that previously there was a successful call to BeginEdit and hence that
whatever changes have been applied can be undone by calling RollbackEdit. It does not indicate
that a call to CommitEdit will necessarily succeed. See CommitEdit for an example of this case.

Examples
OK = D.IsBeingEdited;

OK = knot.IsBeingEdited;

See Also
BeginEdit | IsEditable | CommitEdit | RollbackEdit

 IsBeingEdited

1-109

IsEditable
Boolean signaling whether data is editable

Syntax
OK = D.IsEditable

Description
This is a property of mbcmodel.data.

This Boolean property indicates if a particular piece of data is editable. The following rules apply:

• If the data was created using mbcmodel.CreateData and was not Attached to a test plan it is
editable.

• If the data was created or retrieved from the project and was not Attached to a test plan it is
editable.

• If the data was Attached to a test plan and was subsequently retrieved from that test plan it is
editable.

Examples
D = p.Data;
D1 = p.Data;
BeginEdit(D1);
tp = p.Testplan;
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are mbcmodel.data objects.

At this point D1.IsEditable becomes false because D1 is now Attached to the test plan and hence
can only be modified from the test plan. If you now enter:

OK = D1.IsEditable

the answer is false.

See Also
BeginEdit | IsBeingEdited | CommitEdit | RollbackEdit

1 Commands

1-110

Jacobian
Calculate Jacobian matrix for model at existing or new X points

Syntax
J = Jacobian(model, optional X)

Description
This is a method of mbcmodel.model.

This calculates the Jacobian matrix for the model at existing or new X points. If X is not specified then
the existing data is used. The Jacobian is the regression matrix for linear models and RBF models.

The Jacobian matrix (for linear and RBF models) is the same as the Regression Matrix in the Design
Evaluation Tool GUI. These matrices only include the terms currently selected in the model.

If all terms are included (none removed by Stepwise) then the Jacobian (for linear and RBF models) is
the same as the Full FX matrix found in the Design Evaluation Tool GUI. The Jacobian matrix only
includes the currently selected model terms.

To determine the condition number, use the MATLAB command cond(J).

Examples
J = Jacobian(knot)

Introduced before R2006a

 Jacobian

1-111

Level
Level in test plan of response

Syntax
level = R.Level

Description
This is a property for all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

R is the response for which you want the level.

The level is usually 0 for hierarchical models, usually 1 for local models, and usually 2 or 1 for
response models. See “Understanding Model Structure for Scripting” for an explanation of what
Level indicates about a response.

Examples
level = R.Level;

See Also
Levels

1 Commands

1-112

Levels
Number of levels in hierarchical model

Syntax
levels = T.Levels

Description
This is a property of mbcmodel.testplan.

See “Understanding Model Structure for Scripting” for an explanation of what Levels mean.

Examples
levels = T.Levels;

See Also
Level

 Levels

1-113

Load
Load existing project file

Syntax
P = Load(P, Filename)

Description
This is a method of mbcmodel.project.

P is a project object, and Filename is the full path to the project you want to load.

Examples
P2 = Load(P2, 'D:/MBCwork/TQproject2.mat');

See Also
New

Introduced before R2006a

1 Commands

1-114

LoadProject
Load mbcmodel.project

Syntax
P = mbcmodel.LoadProject(filename)

Description
P = mbcmodel.LoadProject(filename) loads a mbcmodel.project from the file filename.

See Also
CreateProject | Load

Introduced in R2007a

 LoadProject

1-115

Local
Local boundary model tree

Syntax

Description
This is a property of mbcboundary.TwoStageTree.

The Local property contains a local boundary model tree (read only).

Point-by-point and two-stage boundary models are fitted in the local boundary model tree. These
boundary models fit local boundary models for each operating point and combine into a single
boundary model that includes the global inputs.

Introduced in R2009b

1 Commands

1-116

LocalBoundaries
Array of local boundary models for each operating point

Syntax
LocalBoundaries(B)

Description
This is a property of mbcboundary.PointByPoint.

LocalBoundaries(B) returns a cell array of local boundary models for each operating point (read
only).

Introduced in R2009b

 LocalBoundaries

1-117

LocalModel
Definition of local boundary model

Syntax
B.LocalModel

Description
This is a property of mbcboundary.PointByPoint and mbcboundary.TwoStage.

B.LocalModel returns the definition of the local boundary model for every operating point.

For mbcboundary.TwoStage, LocalModel requires a type of either Range or Ellipsoid.

For mbcboundary.PointByPoint, the LocalModel type can be any valid type for
mbcboundary.Model (such as Range, Ellipsoid, Star-shaped, or Convex Hull).

1 Commands

1-118

LocalModel Properties
Edit local model properties

Syntax
Props = localmodel.Properties

Description
This is a property of the mbcmodel.localmodel object, which is a subclass of mbcmodel.model.

See “Understanding Model Structure for Scripting” for an explanation of the relationship between
the different response types.

Every local model object has an mbcmodel.modelproperties object (within the Properties property). In
this object, each local model type has specific properties, as described in the following tables.

Local Polynomial Properties

Property Description
Order Polynomial order (vector int: {[0,Inf],2})
InteractionOrder Maximum order of interaction terms (int: [0,Inf])
TransformInputRange Transform inputs (Boolean)
ParameterNames List of parameter names (read-only)
StepwiseStatus Stepwise status {'Always','Never','Step'}

(cell)
Transform Transform function (char) or empty ('')
CovarianceModel Covariance Model

(enum: {'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

 LocalModel Properties

1-119

Local Hybrid Spline Properties

Property Description
Order Spline and polynomial order (vector int:

{[0,3],2})
SplineVariable Spline variable
SplineInteraction Order of interaction between spline and

polynomial (int: [0,3])
Knots: Position of knots (vector real) ParameterNames: List of parameter names (read-

only)
StepwiseStatus Stepwise status {'Always','Never','Step'}

(cell)
Transform Transform function (char) or empty ('')
CovarianceModel Covariance Model

(enum: {'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

Local Polynomial Spline Properties

Property Description
HighOrder Polynomial order above knot (int: [2,Inf])
LowOrder Polynomial order below knot (int: [2,Inf])
Transform Transform function (char) or empty ('')
CovarianceModel Covariance Model

(enum: {'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

DatumType Datum Type (enum:
{'None','Maximum','Minimum',
'Linked'})

1 Commands

1-120

Local Polynomial With Datum Properties

Property Description
Order Polynomial order (int: [0,Inf])
Transform Transform function (char) or empty ('')
CovarianceModel Covariance Model

(enum: {'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

DatumType Datum Type (enum:
{'None','Maximum','Minimum',
'Linked'})

Local Free Knot Spline Properties

Property Description
Order Spline Order (int: [0,Inf])
NumKnots Number of knots (int: 'Positive')
Transform Transform function (char) or empty ('')
CovarianceModel Covariance Model

(enum: {'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

Local Truncated Power Series Properties

Property Description
Order Polynomial order (int: 'Positive')
NumKnots Number of knots (int: 'Positive')
Transform Transform function (char) or empty ('')
CovarianceModel Covariance Model

(enum: {'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

 LocalModel Properties

1-121

Local Growth Properties

Property Description
Model Growth model (enum: {'expgrowth','gomp',

'logistic','logistic4',
'mmf','richards',
'weibul'})

AlternativeModels List of growth models (read-only)
Transform Transform function (char) or empty ('')
TransformBothSides Transform both sides (Boolean)
CovarianceModel Covariance Model

(enum: {'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

Local User-Defined Properties

Property Description
Model Name of user-defined model (enum:

{'exponential'})
AlternativeModels List of registered user-defined models (read-only)
Transform Transform function (char) or empty ('')
TransformBothSides Transform both sides (Boolean)
CovarianceModel Covariance Model

(enum: {'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

1 Commands

1-122

Local Transient Properties

Property Description
Model Name of transient model (enum:

{'fuelPuddle'})
AlternativeModels List of registered transient models (read-only)
Transform Transform function (char) or empty ('')
TransformBothSides Transform both sides (Boolean)
CovarianceModel Covariance Model

(enum: {'None','Power',
'Exponential','Mixed'})

CorrelationModel Correlation Model (enum:
{'None','MA(1)','AR(1)',
'AR(2)'})

Local Multiple Models Properties

Property Description
ModelCandidates List of candidate models (cell)
SelectionStatistic Selection statistic for automatic model selection

(char). See below for input names and
descriptions. The list of valid statistics is the
summary statistics in common with all model
candidates (e.g., if an interpolating RBF is one of
the candidates, only RMSE will be available).

AutomaticInputRanges Use data range as model input ranges (Boolean)
Transform Transform function (char) or empty ('')

Model Type List of SelectionStatistic Inputs
Polynomial,Hybrid Spline, RBF, Hybrid RBF 'PRESS RMSE','RMSE','GCV','Weighted

PRESS','-2logL','AIC','AICc',
'BIC','R^2','R^2 adj',
'PRESS R^2','DW','Cp','cond(J)'

Neural Network 'RMSE','R^2','R^2
adj','-2logL','AIC','AICc','BIC'

Free Knot Spline 'PRESS RMSE','RMSE','GCV','Weighted
PRESS','-2logL','AIC','AICc',
'BIC','R^2','R^2 adj',
'PRESS R^2','DW','Cp'

Interpolating RBF 'RMSE'

SelectionStatistic Input
Argument

Description

'PRESS RMSE' Predicted Standard Error 'sqrt(PRESS/N)'
'RMSE' Root Mean Square Error 'sqrt(SSE/(N-p))'

 LocalModel Properties

1-123

SelectionStatistic Input
Argument

Description

'GCV' Generalized Cross-validation
Variance

'N*SSE/(N-p)^2'

'Weighted PRESS' Weighted Predicted Standard
Error

'sqrt(PRESS/(N-p-1))'

'-2logL' -2 * log likelihood 'N*log(SSE/N)'
'AIC' Akaike Information Criteria '-2logL + 2*(p+1)'
'AICc' Small Sample Akaike

Information Criteria
'-2logL + 2(p+1)*N/(N-
p)'

'BIC' Bayesian Information Criteria '-2logL + 2*log(N)*(p
+1)'

'R^2' R^2 '1 - SSE/SST'
'R^2 adj' Adjusted R^2 '1 - SSE/SST*(N-1)/(N-

p)'
'PRESS R^2' PRESS R^2 '1 - PRESS/SST'
'DW' Durbin-Watson Statistic 'sum((e_i-e_{i+1})^2)/

sum(e_i^2) '
'Cp' Mallow's Statistic 'SSE/(SSEmax/(N-pmax)) -

N + 2*p'
'cond(J)' Condition of Regression Matrix 'cond(J)'

Local Average Fit Properties
Property Description
Model [1x1 mbcmodel.linearmodel]
Transform Transform function (char) or empty ('')

Examples
To create a local model object, create a model specifying any model Type that begins with the word
“local”, e.g.,

L = mbcmodel.CreateModel('Local Polynomial',2);

To show properties, at the command line enter:

P = L.Properties

P =
Local Polynomial Properties
 Order: [3 3]
 InteractionOrder: 3
 TransformInputRange: 1
 ParameterNames: {10x1 cell}
 StepwiseStatus: {10x1 cell}
 Transform: ''
 CovarianceModel: 'None'
 CorrelationModel: 'None'

1 Commands

1-124

To set the Order property to a quadratic, enter:

>> P.Order = [2,2]

P =
Local Polynomial Properties
 Order: [2 2]
 InteractionOrder: 2
 TransformInputRange: 1
 ParameterNames: {6x1 cell}
 StepwiseStatus: {6x1 cell}
 Transform: ''
 CovarianceModel: 'None'
 CorrelationModel: 'None'

To update the local model, the properties object must be reassigned to the model as follows:

>> L.Properties = P

L =

 1 + 2*X1 + 5*X2 + 3*X1^2 + 4*X1*X2 + 6*X2^2
 InputData: [0x2 double]
 OutputData: [0x1 double]
 Status: Being Edited
 Linked to Response: not linked

See Also
CreateModel | Type (for models) | ResponseFeatures(Local Model)

 LocalModel Properties

1-125

LocalResponses
Array of local responses for response

Syntax
local = response.LocalResponses

Description
This is a property of the mbcmodel.hierarchicalresponse object.

It returns the local model response objects that belong to the hierarchical response R.

See “Understanding Model Structure for Scripting” for an explanation of the relationship between
the different response types.

Examples
local = response.LocalResponses;

1 Commands

1-126

MakeHierarchicalResponse
Build two-stage model from response feature models

Syntax
OK = MakeHierarchicalResponse(L,MLE)

Description
This method of mbcmodel.localresponse builds a two-stage model from the response feature
models and optionally runs MLE (Maximum Likelihood Estimation). If there are more response
features than the number of parameters in the local model, the subset of response features that leads
to the best hierarchical response is chosen. The best hierarchical response is chosen using PRESS
RMSE (root mean square prediction error — see “PRESS statistic”) if all the response feature models
are linear. Otherwise, the best hierarchical response is chosen using Two-stage RMSE.

This performs a similar function to ChooseAsBest for response models. You can call
MakeHierarchicalResponse directly or indirectly by calling CreateAlternativeModels for a
local model. If you call CreateAlternativeModels for a local model,
MakeHierarchicalResponse is called automatically.

If the local and response models are not ready to calculate a two-stage model, an error is generated.
This situation can occur if you have created alternative models and not chosen the best. A sufficient
number of response features models to calculate the two-stage model must be selected.

L is the local model object.

MLE can be true or false. If true, MLE will be calculated.

Examples
OK = MakeHierarchicalResponse(L, true)

See Also
ChooseAsBest

Introduced before R2006a

 MakeHierarchicalResponse

1-127

MatchInputs
Match design constraint inputs

Syntax
C = MatchInputs(C,DesignInputs)
C = MatchInputs(C,DesignInputs,mapping)

Description
MatchInputs is a method of mbcdoe.designconstraint. Use it to match inputs for constraints
from different sources.

C = MatchInputs(C,DesignInputs) matches DesignInputs and inputs in C.

C = MatchInputs(C,DesignInputs,mapping) matches inputs where mapping defines the
relationship between the inputs in C, and DesignInputs.

Examples
A design constraint does not have required inputs EXH_RET and INT_ADV. Use MatchInputs to
match the constraint inputs to the design inputs as follows:

c = BoundaryModel(p.Testplans,'all')
c =
Star(N-3.5e+003,L-0.54)

originalInputs=c.Inputs
originalInputs =
 SPEED (N) [rpm] [500,6000]
 LOAD (L) [%] [0.06,0.95]

designInputs = Design.Inputs
designInputs =
 SPEED (N) [rpm] [500,6000]
 LOAD (L) [%] [0.06,0.95]
 EXH_RET (ECP) [DegCrank] [-5,50]
 INT_ADV (ICP) [DegCrank] [-5,50]

c2=MatchInputs(c,designInputs,[1 2]);
newInputs=c2.Inputs
newInputs =
 SPEED (N) [rpm] [500,6000]
 LOAD (L) [%] [0.06,0.95]
 EXH_RET (ECP) [DegCrank] [-5,50]
 INT_ADV (ICP) [DegCrank] [-5,50]

See Also
CreateConstraint

1 Commands

1-128

Introduced in R2008a

 MatchInputs

1-129

Maximin
Maximum of minimum of distance between design points

Syntax
s = Maximin(D)

Description
Maximin is a method of mbcdoe.design.

s = Maximin(D) returns the maximum of the minimum distance between design points. Maximin is
defined over the unconstrained design and is only available for space-filling design types.

See Also
Minimax

Introduced in R2008a

1 Commands

1-130

mbcboundary.AbstractBoundary
Base boundary model class

Description
Do not use this class directly because the mbcboundary.AbstractBoundary class is the base class
for all boundary model classes in the Model-Based Calibration Toolbox software.

The following subclasses inherit all the properties and methods of the
mbcboundary.AbstractBoundary class:

• mbcboundary.Model
• mbcboundary.Boolean
• mbcboundary.PointByPoint
• mbcboundary.TwoStage

Properties of mbcboundary.AbstractBoundary

FitAlgorithm Fit algorithm for model or boundary model
Fitted Indicate whether boundary model has been fitted
Inputs Inputs for test plan, model, boundary model, design, or constraint
Name Name of object
NumInputs Number of model, boundary model, or design object inputs
Type (for boundary models) Boundary model type

Methods of mbcboundary.AbstractBoundary

CreateBoundary Create boundary model
designconstraint Convert boundary model to design constraint
Evaluate Evaluate model, boundary model, or design constraint
getAlternativeTypes Alternative model or design types

Introduced in R2009b

 mbcboundary.AbstractBoundary

1-131

mbcboundary.Boolean
Boolean boundary model class

Description
You can create Boolean boundary models, which are useful as design constraints, in two ways. You
can either use logical operators (&,|,~) on other boundary models, or you can include more than one
boundary model in the best boundary model for a boundary tree. If you combine boundary models
using logical operators you cannot add the resulting Boolean boundary model to a boundary tree.

When working in projects, you can combine boundary models by including them InBest. For
example, you can use subsets of input factors to build boundary models (see ActiveFactors). You
can then combine the subset boundary models for the most accurate boundary. This approach can
provide more effective results than including all inputs. If the BestModel property of the boundary
tree includes more than one boundary model, then the boundary model is an mbcboundary.Boolean
object.

This class is a subclass of mbcboundary.AbstractBoundary.

Properties of mbcboundary.Boolean

FitAlgorithm Fit algorithm for model or boundary model
Fitted Indicate whether boundary model has been fitted
Inputs Inputs for test plan, model, boundary model, design, or constraint
Name Name of object
NumInputs Number of model, boundary model, or design object inputs
Type (for boundary models) Boundary model type

Methods of mbcboundary.Boolean

CreateBoundary Create boundary model
designconstraint Convert boundary model to design constraint
Evaluate Evaluate model, boundary model, or design constraint
getAlternativeTypes Alternative model or design types

Introduced in R2009b

1 Commands

1-132

mbcboundary.Model
Boundary model class

Description
The mbcboundary.Model class represents the basic boundary model types in the Model-Based
Calibration Toolbox software.

You can fit boundary models in mbcmodel projects using the boundary tree class
mbcboundary.Tree, or you can fit boundary models directly to data.

You can combine boundary models using the logical operators &, | and ~.

This class is a subclass of mbcboundary.AbstractBoundary.

Properties of mbcboundary.Model

ActiveInputs Active boundary model inputs
FitAlgorithm Fit algorithm for model or boundary model
Fitted Indicate whether boundary model has been fitted
Inputs Inputs for test plan, model, boundary model, design, or constraint
Name Name of object
NumInputs Number of model, boundary model, or design object inputs
Type (for boundary models) Boundary model type

Methods of mbcboundary.Model

CreateBoundary Create boundary model
designconstraint Convert boundary model to design constraint
Evaluate Evaluate model, boundary model, or design constraint
fit Fit model or boundary model to new or existing data, and provide summary

statistics
getAlternativeTypes Alternative model or design types

Introduced in R2009b

 mbcboundary.Model

1-133

mbcboundary.PointByPoint
Point-by-point boundary model class

Description
You can only create and fit point-by-point boundary models in the local boundary tree in two ways.
You can use either a two-stage test plan or an existing boundary of type, either 'Point-by-point'
or 'Two-stage'. You cannot create or fit these types of boundary models outside a project. Fit them
by adding to the boundary model to the boundary tree.

A separate boundary model is fitted to each operating point. Point-by-point boundary models are only
valid at the observed operating points.

This class is a subclass of mbcboundary.AbstractBoundary.

Properties of mbcboundary.PointByPoint

FitAlgorithm Fit algorithm for model or boundary model
Fitted Indicate whether boundary model has been fitted
Inputs Inputs for test plan, model, boundary model, design, or constraint
LocalBoundaries Array of local boundary models for each operating point
LocalModel Definition of local boundary model
Name Name of object
NumInputs Number of model, boundary model, or design object inputs
OperatingPoints Model operating point sites
Type (for boundary models) Boundary model type

Methods of mbcboundary.PointByPoint

CreateBoundary Create boundary model
designconstraint Convert boundary model to design constraint
Evaluate Evaluate model, boundary model, or design constraint
getAlternativeTypes Alternative model or design types

Introduced in R2009b

1 Commands

1-134

mbcboundary.Tree
Boundary tree class

Description
The boundary Tree is a container for all the boundary models you create. You access the boundary
tree from the Boundary property of mbcmodel.testplan. The root of the boundary tree for a one-
stage test plan is an mbcboundary.Tree object. The root of the boundary tree for a two-stage test
plan is a mbcboundary.TwoStageTree, and this object has mbcboundary.Tree objects in its
Local, Global and Response properties.

Use the Models and BestModel properties of the boundary Tree to access your boundary models.

Properties of mbcboundary.Tree

BestModel Combined best boundary models
Data Array of data objects in project, boundary tree, or test plan
InBest Boundary models selected as best
Models Array of boundary models
TestPlan Test plan containing boundary tree

Methods of mbcboundary.Tree

Add Add boundary model to tree and fit to test plan data
CreateBoundary Create boundary model
Remove Remove project, test plan, model, or boundary model
Update Update boundary model in tree and fit to test plan data

Introduced in R2009b

 mbcboundary.Tree

1-135

mbcboundary.TwoStage
Two-stage boundary model class

Description
You can only create and fit two-stage boundary models in the local boundary tree in two ways. You
can use a two-stage test plan or an existing boundary of type, either 'Point-by-point' or 'Two-
stage'. You cannot create or fit these types of boundary models outside a project. Fit them by
adding the boundary model to the boundary tree.

Local boundary model parameters are fitted using interpolating RBFs for global inputs. Two-stage
boundary models are valid at any operating point.

This class is a subclass of mbcboundary.AbstractBoundary.

Properties of mbcboundary.TwoStage

FitAlgorithm Fit algorithm for model or boundary model
Fitted Indicate whether boundary model has been fitted
GlobalModel Interpolating global boundary model definition
Inputs Inputs for test plan, model, boundary model, design, or constraint
LocalModel Definition of local boundary model
Name Name of object
NumInputs Number of model, boundary model, or design object inputs
Type (for boundary models) Boundary model type

Methods of mbcboundary.TwoStage

CreateBoundary Create boundary model
designconstraint Convert boundary model to design constraint
Evaluate Evaluate model, boundary model, or design constraint
getAlternativeTypes Alternative model or design types
getLocalBoundary Local boundary model for operating point

Introduced in R2009b

1 Commands

1-136

mbcboundary.TwoStageTree
Root boundary tree class in two-stage test plans

Description
You access the boundary tree from the Boundary property of mbcmodel.testplan. The root of the
boundary tree for two-stage test plans contains boundary trees (mbcboundary.Tree objects) for
local, global and response boundary models in the Local, Global and Response properties
respectively.

Details of properties:

• Local — Local boundary model tree (read only).

Point-by-point and two-stage boundary models are fitted in the local boundary model tree. These
boundary models fit local boundary models for each operating point and combine into a single
boundary model that includes the global inputs.

• Global —Global boundary model tree (read only).

Boundary models in the global model boundary tree are fitted with one point per test (the average
value of the global variables for that test).

• Response — Response boundary model tree (read only).

Boundary models in the response model boundary tree are fitted with all local and global input
data for the test plan.

• BestModel — Best boundary model (local, global, and response) (read only).

BestModel is the boundary model combining the best local, global, and response boundary
models. You can select which boundary models to include in the best model with InBest. If the
best boundary model includes more than one boundary model, that boundary model is an
mbcboundary.Boolean object.

• InBest — Logical array indicating which boundary models you selected as best.

You can combine local, global, and response boundary models into a single boundary model for the
test plan. The logical array specifies whether to include, in order, the best local, global, and
response boundary models, in the best boundary model for the test plan. The BestModel property
gives the best boundary model for the test plan.

• TestPlan — Test plan object that contains this boundary tree (read only).

Properties of mbcboundary.TwoStageTree

BestModel Combined best boundary models
Global Global boundary model tree
InBest Boundary models selected as best
Local Local boundary model tree
Response Response for model object
TestPlan Test plan containing boundary tree

 mbcboundary.TwoStageTree

1-137

See Also

Introduced in R2009b

1 Commands

1-138

mbcPointByPointModel
Class for evaluating point-by-point models and calculating PEV

Description
If you convert an mbcmodel.localresponse object using Export and you have not created a two-
stage model (hierarchical response object), then the output is an mbcPointByPointModel object.
Point-by-point models are created from a collection of local models for different operating points.
mbcPointByPointModel objects share all the same methods as xregstatsmodel except dferror.
See xregstatsmodel.

Introduced in R2010a

 mbcPointByPointModel

1-139

Merge
Merge designs

Syntax
D = Merge(D1,D2,...)

Description
Merge is a method of mbcdoe.design.

D = Merge(D1,D2,...) merges the specified designs D1, D2, etc. into a single design D. The
resulting design is a custom design Style.

See Also
Style | Augment

Introduced in R2008a

1 Commands

1-140

Minimax
Minimum of maximum distance between design points

Syntax
s = Minimax(D)

Description
Minimax is a method of mbcdoe.design.

s = Minimax(D) returns the minimum of the maximum distance between design points. Minimax is
defined over the unconstrained design and is only available for space-filling designs.

See Also
Maximin

Introduced in R2008a

 Minimax

1-141

Model (for designs)
Model for design

Syntax
D.Model = NewModel

Description
Model is a property of mbcdoe.design.

D.Model = NewModel changes the model for the design to NewModel.

The number of inputs cannot be changed. Many designs have Limits properties in addition to model
input ranges.

Setting this property changes optimal designs to custom if the new model does not support optimal
designs.

See Also
Inputs

Introduced in R2008a

1 Commands

1-142

Model Object
Model object within response object

Syntax
M = response.Model

Description
This is a property of all mbcmodel.response objects.

Each response contains a model object (mbcmodel.model) that can be extracted and manipulated
independently of the project.

Extract a model object from any response object (see Response), and then:

• Fit to new data (fit).
• Change model type, properties, and fit algorithm settings (ModelSetup, Type (for models);

Properties (for models), CreateAlgorithm).
• Create a copy of the model with the same inputs (CreateModel).
• Include and exclude terms to improve the model (StepwiseRegression).
• Examine coefficient values, predicted values, and regression matrices (ParameterStatistics;

PredictedValue; Jacobian).
• If you change the model you need to use UpdateResponse to replace the new model back into

the response object in the project. When you use UpdateResponse the new model is fitted to the
response data.

Examples
M = response.Model;

 Model Object

1-143

ModelForTest
Model for specified test

Syntax
model = ModelForTest(L,TestNo);

Description
This is a method of mbcmodel.localresponse.

model = ModelForTest(L,TestNo); gets the model for test TestNo.

Examples
To get the model for test 22, enter:

model = ModelForTest(L,22);

Introduced in R2007b

1 Commands

1-144

modelinput
Create modelinput object

Syntax
Inputs = mbcmodel.modelinput('Property1',value1,'Property2',value2,...);
Inputs = mbcmodel.modelinput(NUMINPUTS);
Inputs = mbcmodel.modelinput(INPUTCELLARRAY);

Description
This is the constructor for the mbcmodel.modelinput object.

Inputs = mbcmodel.modelinput('Property1',value1,'Property2',value2,...);
creates the mbcmodel.modelinput object.

You can set the properties shown in the following table.

Property Description
Range [min,max]
NonlinearTransform {'','1./x','sqrt(x)',

'log10(x)','x.^2',
'log(x)'}

Name Character vector. Signal name from dataset.
Inputs for a test plan must be set before selecting
data.

Symbol Character vector. Short name for plot labels and
for use in CAGE.

Units Character vector. Units are overwritten from the
dataset units when a data is selected.

Specify “property, value” pairs as follows:

Inputs = mbcmodel.modelinput('Symbol',{'A','B'},...
 'Range',{[0 100],[-20 20]});

Scalar expansion of properties is supported, e.g.,

Inputs = mbcmodel.modelinput('Symbol',{'A','B'},...
 'Range',[0 100]);

Inputs = mbcmodel.modelinput(NUMINPUTS); creates the mbcmodel.modelinput object with
the specified number inputs.

NUMINPUTS is the number of inputs. Symbols are automatically set to 'X1', 'X2',...,'Xn'. The
default range is [-1,1]. For example:

Inputs = mbcmodel.modelinput(2);

 modelinput

1-145

Inputs = mbcmodel.modelinput(INPUTCELLARRAY); creates the mbcmodel.modelinput
object with INPUTCELLARRAY inputs.

INPUTCELLARRAY is a cell array with one row per input and 5 columns to specify factor names,
symbols, ranges and nonlinear transforms as follows.

The columns of INPUTCELLARRAY must be:

1 Factor symbol (character vector)
2 Minimum (double)
3 Maximum (double)
4 Transform (character vector) — empty for none
5 Signal name

These columns are the same as the columns in the Model Factor Setup dialog box, which can be
launched from the test plan in the model browser.

Examples
To create a modelinput object with 2 inputs, enter:

Inputs = mbcmodel.modelinput(2);

To create a modelinput object and define symbols and ranges, enter:

Inputs = mbcmodel.modelinput('Symbol',{'A','B'},...
 'Range',{[0 100],[-20 20]});

Inputs = mbcmodel.modelinput('Symbol',{'A','B'},...
 'Range',[0 100]);

To create a modelinput object and define inputs with a cell array, enter:

Inputs = mbcmodel.modelinput({...
 'N', 800, 5000, '', 'ENGSPEED'
 'L', 0.1, 1, '', 'LOAD'
'EXH', -5, 50, '', 'EXHCAM'
'INT', -5, 50, '', 'INTCAM'});

See Also
CreateModel | CreateTestplan

Introduced in R2007b

1 Commands

1-146

Models
Array of boundary models

Syntax
Models(T)

Description
This is a property of mbcboundary.Tree.

Models(T) returns a cell array of boundary models (read only).

Introduced in R2009b

 Models

1-147

ModelSetup
Open Model Setup dialog box where you can alter model type

Syntax
[newModel, OK] = ModelSetup(oldModel)

Description
This is a method of mbcmodel.model objects.

This method opens the Model Setup dialog box where you can choose new model types and settings.
If you click Cancel to dismiss the dialog, OK = false and newModel = oldModel. If you click OK
to close the dialog box, then OK = true and newModel is your new chosen model setup. Data and
response remain the same as oldModel. The new model is refitted when you click OK.

Call UpdateResponse to put the new model type back into the response.

Examples
[RBF, OK] = ModelSetup(Cubic);

See Also
UpdateResponse | fit

Introduced in R2006a

1 Commands

1-148

Modified
Boolean signaling whether project has been modified

Syntax
Name = P.Modified

Description
This is a property of mbcmodel.project.

Examples
Name = Project.Modified;

 Modified

1-149

ModifyFilter
Modify user-defined filter in dataset

Syntax
D = ModifyFilter(D, Index, expr)

Description
This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing filters.

D is a data object.

Index is the input index to indicate which of the available filters you wish to modify. Use the property
Filters to find the index for each filter.

expr is the input character vector holding the expression that defines the filter, as for AddFilter.

Examples
ModifyFilter(D, 3, 'AFR < AFR_CALC + 20');

The effect of this filter is to modify filter number 3 to keep all records where AFR < AFR_CALC + 20.

ModifyFilter(D, 2, 'MyNewFilterFunction(AFR, RPM, TQ, SPK)');

This modifies filter number 2 to apply the function MyNewFilterFunction.

See Also
AddFilter | RemoveFilter | Filters

Introduced before R2006a

1 Commands

1-150

ModifyTestFilter
Modify user-defined test filter in dataset

Syntax
D = ModifyTestFilter(D, Index, expr)

Description
This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing filters.

D is a data object.

Index is the input index to indicate which of the available test filters you wish to modify. Use the
property TestFilters to find the index for each test filter.

expr is the input character vector holding the expression that defines the test filter, as for
AddTestFilter.

Examples
ModifyTestFilter(d1, 2, 'any(n>2000)');

The effect of this is to modify test filter number 2 to include all tests in which any records have speed
(n) greater than 1000.

See Also
AddTestFilter | RemoveTestFilter | TestFilters

Introduced before R2006a

 ModifyTestFilter

1-151

ModifyVariable
Modify user-defined variable in dataset

Syntax
D = ModifyVariable(D, Index, expr, units)

Description
This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing variables.

D is a data object.

Index is the input index to indicate which of the available variables you wish to modify. Use the
property UserVariables to find the index for each variable.

expr is the input character vector holding the expression that defines the variable, as for
AddVariable.

units is an optional input character vector holding the units of the variable.

Examples
ModifyVariable(D, 2, 'MY_NEW_VARIABLE = TQ*AFR/2');

See Also
AddVariable | RemoveVariable | UserVariables

Introduced before R2006a

1 Commands

1-152

MultipleVIF
Multiple VIF matrix for linear model parameters

Syntax
VIF = MultipleVIF(LINEARMODEL)

Description
This is a method of mbcmodel.linearmodel.

VIF = MultipleVIF(LINEARMODEL) calculates the multiple Variance Inflation Factor (VIF) matrix
for the linear model parameters.

Examples
VIF = MultipleVIF(knot_model)

See Also
ParameterStatistics

Introduced in R2007a

 MultipleVIF

1-153

Name
Name of object

Syntax
name = A.Name

Description
This is a property of project, data, test plan, input, model, fitalgorithm, design, design constraint, and
boundary model objects.

A can be any test plan (T), data (D), project (P) model (L, R, HR), fitalgorithm (F), design (D), design
constraint (C) or boundary model (B) object.

You can change the names of these objects as follows:

A.Name = newName

For response (output or Y data) signal names, see ResponseSignalName.

For mbcmodel.model.Name, the Name property refers to the model output name. The toolbox sets
this property to the data signal name when the response is created or if you assign a model to a
response. You cannot set this property when a response is attached to the model.

For model parameter names, see Names.

For testplan and response object input names, see InputSignalNames, and for data objects, see
SignalNames.

Names of boundary models are read only and provide a description of the boundary model type and
active inputs.

Examples
ResponseFeatureName = thisRF.Name;

See Also
Names | InputSignalNames | SignalNames | ResponseSignalName

1 Commands

1-154

Names
Model parameter names

Syntax
N = params.Names

Description
This is a property of mbcmodel.modelparameters. It returns the names of all the parameters in the
model. These are read-only.

Examples
N = paramsknot.Names
N =
'1'
'N'
'N^2'
'N*L'
'N*A'
'L'
'L^2'
'L*A'
'A'
'A^2';

See Also
NumberOfParameters | Values | Name

 Names

1-155

New
Create new project file

Syntax
P = New(P)

Description
This is a method of mbcmodel.project. Use this to modify a project object to make a new project
from scratch. Note the current project gets removed from memory when you open a new one.

P is the new project object.

Examples
New(P);

See Also
Load

Introduced before R2006a

1 Commands

1-156

NumInputs
Number of model, boundary model, or design object inputs

Syntax
N = model.NumInputs

Description
This is a property of

• mbcmodel.model and mbcmodel.modelproperties
• The design objects mbcdoe.design, mbcdoe.generator, mbcdoe.candidateset, and

mbcdoe.designconstraint
• The boundary model object mbcboundary.AbstractBoundary and all its subclasses:

mbcboundary.Model, mbcboundary.Boolean, mbcboundary.PointByPoint and
mbcboundary.TwoStage. You set the number of boundary model inputs when you create the
boundary model.

It returns the number of inputs to the model, boundary model, or design object.

Examples
N = knot.NumInputs;

 NumInputs

1-157

NumberOfParameters
Number of included model parameters

Syntax
N = knotparams.NumberOfParameters

Description
This is a read-only property of mbcmodel.linearmodelparameters, for linear models only.

The number returned is the number of parameters currently in the model (you can remove some
parameters by using StepwiseRegression). To see which parameters are currently in the model, use
StepwiseSelection. Only parameters listed as 'in' are currently included.

To see the total possible number of parameters in a linear model, use SizeOfParameterSet.

Use Names and Values to get the parameter names and values.

Examples
N = knotparams.NumberOfParameters;

See Also
SizeOfParameterSet | StepwiseSelection | StepwiseRegression | Names | Values

1 Commands

1-158

NumberOfPoints
Number of design points

Syntax
D.NumberOfPoints

Description
NumberOfPoints is a read only property of mbcdoe.design (constrained number of points).

D.NumberOfPoints is the number of points in the design after applying the constraints.

You specify the number of points for a design using the generator object. The NumberOfPoints
property of mbcdoe.generator is the number of points before any constraints are applied. You
cannot specify the number of points for all design types (e.g., it is not allowed for Central Composite,
Box Behnken). To see which design types have an editable NumberOfPoints property, see the tables
in Type (for designs and generators).

See Also
Type (for designs and generators)

 NumberOfPoints

1-159

NumberOfRecords
Total number of records in data object

Syntax
numRecords = D.NumberOfRecords

Description
This is a property of data objects: mbcmodel.data.

Examples
numRecords = Data.NumberOfRecords;

1 Commands

1-160

NumberOfTests
Total number of tests being used in model

Syntax
numtests = A.NumberOfTests

Description
This is a property of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response, and data objects mbcmodel.data. 'A' can
be any model or data object.

Examples
numTests = TQ_response.NumberOfTests;

See Also
DefineTestGroups

 NumberOfTests

1-161

OperatingPoints
Model operating point sites

Syntax
OperatingPoints(B)

Description
This is a property of mbcboundary.PointByPoint.

OperatingPoints(B) returns the operating point sites for models (read only).

Introduced in R2009b

1 Commands

1-162

OptimalCriteria
Optimal design criteria (V, D, A, G)

Syntax
s = OptimalCriteria(D)
s = OptimalCriteria(D,Criteria)

Description
OptimalCriteria is a method of mbcdoe.design. OptimalCriteria can only be used for optimal
designs.

s = OptimalCriteria(D) returns an array with the values of optimal criteria [V,D,A,G].

s = OptimalCriteria(D,Criteria) returns the specified optimal criteria. Criteria must be
one of V,D, A, or G.

Introduced in R2008a

 OptimalCriteria

1-163

OutlierIndices
Indices of DoubleInputData marked as outliers

Syntax
indices = OutlierIndices(R)

Description
This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

Examples
ind = OutlierIndices(R);
bad = OutlierIndices(thisRF);

See Also
DoubleInputData

Introduced before R2006a

1 Commands

1-164

OutlierIndicesForTest
Indices marked as outliers for test

Syntax
indices = OutlierIndicesForTest(R, TestNumber)

Description
This is a method of the local model object, mbcmodel.localresponse.

This shows the current records discarded as outliers.

You can use ':' to use all tests.

Examples
ind = OutlierIndicesForTest(R, ':');
bad = OutlierIndicesForTest(local, tn);

See Also
OutlierIndices

Introduced before R2006a

 OutlierIndicesForTest

1-165

OutputData
Output (or response) data for model

Syntax
D = M.OutputData

Description
This is a property of mbcmodel.model.

It returns an array of the response data currently in the model.

Examples
D = knot.OutputData;

See Also
InputData

1 Commands

1-166

Owner
Object from which data was received

Syntax
O = D1.Owner

Description
This property of mbcmodel.data is:

• Empty if the data was created using mbcmodel.CreateData
• An mbcmodel.project object if the data was extracted from a project
• An mbcmodel.testplan object if the data was extracted from a test plan

Examples
O = D1.Owner;

 Owner

1-167

Parameters
Model parameters

Syntax
P = model.Parameters

Description
This is a property of mbcmodel.model., that contains an object mbcmodel.modelparameters. This
object contains a number of read-only parameters that describe the model.

All models have these properties:

• SizeOfParameterSet
• Names
• Values

Linear models also have these properties:

• StepwiseStatus
• NumberOfParameters
• StepwiseSelection

Radial Basis Function (RBF) models have all the above properties and these additional properties:

• Centers
• Widths

Examples
P = model.Parameters;

See Also
SizeOfParameterSet | Names | Values | StepwiseStatus | NumberOfParameters |
StepwiseSelection | Centers | Widths

1 Commands

1-168

ParameterStatistics
Calculate parameter statistics for linear model

Syntax
values = ParameterStatistics(linearmodel, optional statType)

Description
This is a method of mbcmodel.model, for linear models only. This calculates parameter statistics for
the linear model. If you don't specify statType, then a structure with all valid types is output.
statType may be a character vector specifying a particular statistic or a cell array of character
vectors specifying a number of statistics to output. If statType is a character vector, then values is
an array of doubles. If statType is a cell array of character vectors, then values is a cell array of
array of doubles.

The valid types are:

'Alias'

'Covariance'

'Correlation'

'VIFsingle'

'VIFmultiple'

'VIFpartial'

'Stepwise'

These types (except Stepwise) appear in the Design Evaluation tool; see the documentation for this
tool for details of these matrices.

The Stepwise field contains the values found in the Stepwise table. In this array (and in the
Stepwise GUI) you can see for each parameter in the model: the value of the coefficient, the standard
error of the coefficient, the t value and Next PRESS (the value of PRESS if the status of this term is
changed at the next iteration). See the documentation for the Stepwise table. You can also see these
Stepwise values when you use StepwiseRegression.

Examples
values = ParameterStatistics(knot)
values =
 Alias: [7x3 double]
 Covariance: [7x7 double]
 Correlation: [7x7 double]
 VIFsingle: [5x5 double]
 VIFmultiple: [7x1 double]
 VIFpartial: [5x5 double]

 ParameterStatistics

1-169

 Stepwise: [10x4 double]

values.Stepwise
ans =
 1.0e+003 *
 0.0190 0.0079 0.0210 NaN
 0.0000 0.0000 0.0210 1.9801
 0.0000 0.0000 0.0200 0.2984
 -0.0000 0.0000 0.0200 0.2768
 0.0000 0.0000 0.0200 0.2890
 -0.0526 0.0367 0.0210 0.2679
 0.0911 0.0279 0.0210 0.3837
 -0.0041 0.0024 0.0210 0.2728
 -0.0178 0.0095 0.0200 0.2460
 0.0001 0.0000 0.0210 0.3246

See Also
StepwiseRegression

Introduced before R2006a

1 Commands

1-170

PartialVIF
Partial VIF matrix for linear model parameters

Syntax
STATS = PartialVIF(LINEARMODEL)

Description
This is a method of mbcmodel.linearmodel.

STATS = PartialVIF(LINEARMODEL) calculates the partial Variance Inflation Factor (VIF) matrix
for the linear model parameters.

Examples
VIF = PartialVIF(knot_model)

See Also
ParameterStatistics

Introduced in R2007a

 PartialVIF

1-171

PEV
Predicted error variance of model at specified inputs

Syntax
pev = PEV(R, X)

Description
This is a method of the hierarchical, local response, response, and model objects:
mbcmodel.hierarchicalresponse, mbcmodel.response, and mbcmodel.model.

R is the model object, and X is the array of input values where you want to evaluate the PEV of the
model. For a local response, the predicted value uses the hierarchical model.

Note that for an mbcmodel.model and mbcmodel.response objects only, the X is optional. That is,
the syntax is:

PEV = PEV(model, optional X)

This calculates the Predicated Error Variance at X. If X is not specified, then X is the existing input
values. An array is returned of PEV values evaluated at each data point.

Examples
pev = PEV(R, X);

See Also
PEVForTest

Introduced before R2006a

1 Commands

1-172

PEVForTest
Local model predicted error variance for test

Syntax
pev = PEVforTest(L, TestNumber, X)

Description
This is a method of the local model object, mbcmodel.localresponse.

L is the local model object.

TestNumber is the test for which you want to evaluate the model PEV.

X is the array of inputs where you want to evaluate the PEV of the model.

Examples
pev = PEVforTest(L, TestNumber, X);

See Also
PEV

Introduced before R2006a

 PEVForTest

1-173

Points
Matrix of design points

Syntax
designPoints = D.Points

Description
Points is a property of mbcdoe.design.

designPoints = D.Points returns the matrix of design points.

You can perform any valid MATLAB operation on this matrix. The number of columns of the points
matrix must be the same as the number of inputs when setting Points. If you make an assignment to
the Points, the design type changes to Custom. Points are only updated in the underlying design if
they have changed.

See Also
FixPoints | PointTypes | RemovePoints | NumberOfPoints

1 Commands

1-174

PointTypes
Fixed and free point status

Syntax
D.PointTypes

Description
PointType is a property of mbcdoe.design. Each point has a type of free, fixed or data.

You can specify fixed points. free is the default. If a point has been matched to data then it is of
type data.

D.PointTypes returns a cell array of PointTypes, one for each design point. You cannot change a
PointType of data to something else as the data is set by the test plan when matching the design to
data.

You can use the method FixPoints to fix all the points in a design.

See Also
FixPoints | Points | RemovePoints

 PointTypes

1-175

PredictedValue
Predicted value of model at specified inputs

Syntax
y = PredictedValue(R,X)
y = PredictedValue(R)

Description
This is a method of the hierarchical, response, local response, and model objects:
mbcmodel.hierarchicalresponse, mbcmodel.response, mbcmodel.localresponse, and
mbcmodel.model.

y = PredictedValue(R,X) evaluates the model at the specified inputs, where R is the model
object, and X is the array of inputs where you want to evaluate the output of the model.

Note that for an mbcmodel.model, mbcmodel.localresponse and mbcmodel.response objects,
the X is optional. If X is not specified then the X is the existing input values. That is, the syntax is:

y = PredictedValue(model, optional X)

y = PredictedValue(R) calculates the predicted value at the fit data. An array is returned of
predicted values evaluated at each data point. For local models, this is equivalent to y=
PredictedValue(L, L.InputData).

Note that you cannot evaluate model output for a local response or hierarchical response until you
have constructed it using MakeHierarchicalResponse (or CreateAlternativeModels). If you
have created alternative response feature models then a best model must be selected. If you have
made changes such as removing outliers since choosing a model as best, you may need to choose a
new best model. For a local response, the predicted value uses the hierarchical model. If no data is
specified then the data from all tests is used.

Examples
y = PredictedValue(R, X);
modelPred = PredictedValue(thisRF, x);

See Also
PredictedValueForTest | ChooseAsBest | PEV | Evaluate

Introduced before R2006a

1 Commands

1-176

PredictedValueForTest
Predicted local model response for test

Syntax
y = PredictedValueForTest(L, TestNumber, X)

Description
This is a method of the local model object, mbcmodel.localresponse.

L is a local model object.

TestNumber is the test for which you want to evaluate the model.

X is the array of inputs where you want to evaluate the output of the model.

Examples
y = PredictedValueForTest(L, TestNumber, X);

See Also
PredictedValue

Introduced before R2006a

 PredictedValueForTest

1-177

Properties (for candidate sets)
View and edit candidate set properties

Syntax
properties(CS)
CS.PropertyName = NewValue

Description
“Properties” is a method of mbcdoe.candidateset, which returns a list of properties.

properties(CS) lists the candidate set properties.

CS.PropertyName = NewValue sets the candidate set property.

The candidate set Type determines which properties you can set.

The following table lists the properties available for each candidate set type.

1 Commands

1-178

Candidate Set Properties (for Optimal Designs)

Candidate Set Type Property Description
All built-in: Grid/ Lattice, Grid,
Lattice, Stratified Lattice, Sobol,
Halton

NumberOfPoints (read-only for
Grid and Grid/Lattice)

Number of points (int: [0,Inf])

Limits Design Limits
Grid Levels Selection criteria for best LHS

design (cell)
NumberPerLevel Symmetric design (vector int:

{[-Inf,Inf], NumInputs})
Lattice Generators Prime number generators for

lattice (vector int: {[0,Inf],
NumInputs})

Stratified Lattice StratifyLevels Number of levels for each
factors (vector int: {[0,Inf],
NumInputs})

Sobol Sequence Scramble Scramble method (enum:
{‘none’,
’MatousekAffineOwen’}

SkipMode Skip mode options (enum:
{'None','2^k','Custom'})

Skip Skip size (int: [0,Inf])
Halton Sequence Scramble Scrambling method for

sequence (enum:
{'None','RR2'})

PrimeLeap Leap sequence points using
prime number (boolean)

SkipZero Skip zero point (boolean)
User-defined NumberOfPoints User-defined points (read-only)

Points User-defined points

Examples
You can use property value pairs to specify candidate set properties as part of the
CreateCandidateSet command, or you can set properties individually.

To create a candidate set with type grid and specified grid levels:

CandidateSet = augmentedDesign.CreateCandidateSet...
('Type', 'Grid');
CandidateSet.NumberOfLevels = [21 21 21 21];

See Also
CreateCandidateSet

Introduced in R2008a

 Properties (for candidate sets)

1-179

Properties (for design constraints)
View and edit design constraint properties

Syntax
properties(C)
C.PropertyName = NewValue

Description
“Properties” is a method of mbcdoe.designconstraint, which returns a list of properties.

properties(C) lists the constraint properties.

C.PropertyName = NewValue sets the constraint property.

The constraint Type determines which properties you can set. For more information, see the
following table or Type (for design constraints).

The following table lists the properties available for each constraint type.

1 Commands

1-180

Constraint Properties

Constraint Type Property Description
Linear design constraint:
1*Input1 + 1* Input2 + 1*
Input3 <= 0

A Matrix for linear constraint
(matrix: [1,NumInputs])

b Bound for linear constraint
(double)

Ellipsoid design constraint:
Ellipsoid at (Input1=0,
Input2=0, Input3=0)

CenterPoint Center of ellipse (vector:
NumInputs)

Matrix Ellipsoid form matrix (positive
semi-definite) (matrix:
[NumInputs, NumInputs])

1D Table design constraint:
InputY(InputX) <= InputY max

Table Table constraint (vector)
Breakpoints Breakpoints for rows (vector)
Inequality Relational Operator (enum:

{'<=','>='})
InputFactor Column input symbol (enum:

{ 'InputX','InputY'})
TableFactor Table input symbol (enum:

{'InputX','InputY '})
2D Table design constraint:
InputZ(InputX,InputY)
<=InputZmax

Table : Table constraint (matrix))
RowBreakpoints Breakpoints for rows (vector)
ColumnBreakpoints Breakpoints for columns

(vector)
Inequality Relational operator (enum:

{'<=','>='})
RowFactor Row input symbol (enum:

{'InputX','InputY,
'InputZ'})

ColumnFactor Column input symbol (enum:
{'InputX','InputY,
'InputZ'})

TableFactor Table input symbol (enum:
{'InputX','InputY',
'InputZ'}

Examples
You can use property value pairs to specify constraint properties as part of the CreateConstraint
command, or you can set properties individually.

For examples, see CreateConstraint.

See Also
CreateConstraint

 Properties (for design constraints)

1-181

Introduced in R2008a

1 Commands

1-182

Properties (for design generators)
View and edit design generator properties

Syntax
properties(Generator)
Generator.PropertyName = NewValue

Description
“properties” (lower case p) is a method of mbcdoe.generator, which returns a list of properties.

properties(Generator) lists the generator properties.

Generator.PropertyName = NewValue sets the generator property.

The design generator object Type determines which properties you can set. For more information,
see Type (for designs and generators).

The settings are applied immediately, you do not need to call generate on the design object.

The following tables list the properties available for each design type.

Optimal Design Properties (D-, V- and A-Optimal)

Property Description
NumberOfPoints Number of points (int: [0,Inf])
InitialPoints Initial design points (Matrix)
CandidateSet Candidate set (mbcdoe.candidateset)
AllowReplicates Allow replicate points (boolean)
AugmentMethod Methods to add points (enum:

{'random','optimal'})
Tolerance Tolerance (numeric: 'positive')
MaxIterations Maximum Iterations (int: 'positive')
NumberOfPointsToAlter Number of points to alter per iteration using the

random augment method (p) (int: 'positive')
NoImprovement Number of iterations with no improvement using

the random augment method (p) (int:
'positive')

Note Optimal designs have dependencies between NumberOfPoints, InitialPoints and
CandidateSets. When you change NumberOfPoints, an initial point is drawn from the existing
candidate set. Setting NumberOfPoints updates InitialPoints. Likewise setting
InitialPoints updates NumberOfPoints. When changing the candidate set a new initial design is
drawn from the new candidate set.

 Properties (for design generators)

1-183

Space-Filling Design Properties

Design Type Property Description
All space-filling design types
(Lattice, Latin Hypercube
Sampling, Stratified Latin
Hypercube, Sobol, Halton)

NumberOfPoints Number of points (int: [0,Inf])
Limits Design Limits (matrix:

[NumInputs,2])

Lattice PrimeGenerators Prime number generators for
lattice for each input (vector int:
[0,Inf])

Latin Hypercube Sampling and
Stratified Latin Hypercube

SelectionCriteria Selection criteria for best LHS
design (enum:
{'discrepancy',
'minimax',
'maximin',
'cdfvariance',
'cdfmaximum'})

Symmetry Symmetric design (boolean)
Stratified Latin Hypercube StratifyLevels Number of levels for each

factors (vector int:
{[0,Inf],
NumInputs})

StratifyValues Stratify levels (cell)
Sobol Sequence Scramble Scramble method (enum:

{'none',
'MatousekAffineOwen'}

SkipMode Skip mode options (enum:
{'None','2^k',
'Custom'})

Skip Skip size (int: [0,Inf])
Halton Sequence Scramble Scrambling method for

sequence (enum:
{'None','RR2'})

PrimeLeap Leap sequence points using
prime number (boolean)

SkipZero Skip zero point (boolean)

1 Commands

1-184

Classical Design Properties
Design Type Property Description
All (Box-Behnken, Central
Composite, Full Factorial,
Plackett-Burman, Regular
Simplex)

NumberOfPoints (read-only) Number of points (int: [0,Inf])
Limits Design limits

All except Plackett-Burman NumberOfCenterPoints Number of center points (int:
[0,Inf])

Central Composite StarPoints Star point position (enum:
{'FaceCenteredCube',
'Spherical',
'Rotatable',
'Custom'})

Inscribe Inscribe points (boolean)
Alpha Specify 'Custom' star point

location: (vector: {'positive',
NumInputs})
For 'FaceCenteredCube',
alpha = 1
For 'Spherical', alpha =
sqrt(nf)
For 'Rotatable', alpha =
2^(nf/4)

Full Factorial Levels Cell array of levels for each
input (cell)

NumberOfLevels Number of levels for each input
(vector int: {'positive',
NumInputs })

Examples
You can use property value pairs to specify design generator properties as part of the Generate and
Augment commands. You can also set properties individually. Some examples:

To create a full factorial design and specify the number of levels when generating the design:

design = CreateDesign(inputs, 'Type', 'Full Factorial');
design = Generate(design, 'NumberOfLevels', [50 50]);

To create a latin hypercube sampling design:

globalDesign = TP.CreateDesign(2,...
'Type', 'Latin Hypercube Sampling');

To create and generate a halton design with 50 points:

haltonDesign = CreateDesign(inputs, 'Type',...
 'Halton Sequence', 'Name', 'Halton');
haltonDesign = Generate(haltonDesign, 50);

To explicitly specify the NumberOfPoints property:

 Properties (for design generators)

1-185

haltonDesign = Generate(haltonDesign, 'NumberOfPoints', 50);

To create and generate a halton design with specified scrambling and other properties:

haltonDesignWithScrambling = haltonDesign.CreateDesign...
('Name', 'Scrambled Halton');
haltonDesignWithScrambling = Generate...
(haltonDesignWithScrambling,...
 'Scramble', 'RR2', 'PrimeLeap', true);

To generate an optimal design with specified properties:

OptDesign = Generate(OptDesign,...
 'Type','V-optimal',...
 'CandidateSet',C,...
 'MaxIterations',200,...
 'NoImprovement', 50,...
 'NumberOfPoints',200);

The previous code is equivalent to setting the properties individually and then calling Generate as
follows:

P = OptDesign.Generator;
P.Type = 'V-optimal';
P.CandidateSet.NumberOfLevels(:)=21;
P.MaxIterations = 200;
P.NumberOfPoints = 200;
P.NoImprovement = 50;
OptDesign.Generator = P;

To augment a design optimally with 20 points:

OptDesign = Augment(OptDesign,...
 'Type','V-optimal',...
 'MaxIterations',200,...
 'NoImprovement', 50,...
 'NumberOfPoints',20);

See Also
CreateDesign | Generate | Augment | Properties (for candidate sets) | Properties
(for design constraints)

Introduced in R2008a

1 Commands

1-186

Properties (for models)
View and edit model properties

Syntax
modelprop=M.Properties
M.Properties.PropertyName = NewValue
properties(M.Properties)
f=M.Properties.properties

Description
“Properties” is a property of mbcmodel.model.

modelprop=M.Properties returns a mbcmodel.modelproperties object.

To edit a property, use the syntax M.Properties.PropertyName = NewValue.

“properties” is a method of mbcmodel.fitalgorithm and mbcmodel.modelproperties which
returns a list of properties.

properties(M.Properties) lists the property names, types and allowed values.

f=M.Properties.properties returns the property names as a cell array.

The model Type determines which properties you can set. For more information, see Type (for
models).

To get a mbcmodel.modelproperties object from a model:

>> M = mbcmodel.CreateModel('Polynomial', 4);
>> disp(M)
mbcmodel.linearmodel:Polynomial

>>modelproperties=M.Properties

modelproperties =
Polynomial Properties
 Order: [3 3 3 3]
 InteractionOrder: 3
 TransformInputRange: 1
 ParameterNames: {35x1 cell}
 StepwiseStatus: {35x1 cell}
 BoxCox: 1

To create a model and list the properties:

>> M = mbcmodel.CreateModel('RBF',2)

M =

 A radial basis function network using a multiquadric kernel

 Properties (for models)

1-187

 with 0 centers
 and a global width of 2.
 The regularization parameter, lambda, is 0.0001.
 InputData: [0x2 double]
 OutputData: [0x1 double]
 Status: Not fitted
 Linked to Response: <not linked>

>> properties(M.Properties)
RBF Properties
 Kernel: RBF kernel (enum: {'multiquadric',...
'recmultiquadric','gaussian','thinplate','logisticrbf',...
'wendland', 'linearrbf','cubicrbf'})
 Continuity: Continuity for Wendland kernel...
 (0,2,4,6) (int: [0,6])
 ParameterNames: List of parameter names (read-only)
 StepwiseStatus: Stepwise status {'Always','Never',...
'Step'} (cell)
 BoxCox: Box-Cox transform (power) (numeric: [-3,3])

The following syntax returns the properties as a cell array:

>> f=M.Properties.properties

f =

 'Kernel'
 'Continuity'
 'ParameterNames'
 'StepwiseStatus'
 'BoxCox'

Change a property as follows:

>>M.Properties.Kernel = 'thinplate';

The model changes state to ‘Being Edited'. The settings are not applied until you call Fit on the model
object.

The following sections list the properties available for each model type.

Gaussian Process Models — Properties

KernelFunction: Kernel function (enum:
{'Exponential','ARDExponential','SquaredExponential','ARDSquaredExponential','Matern32','ARDMat
ern32','Matern52','ARDMatern52','RationalQuadratic','ARDRationalQuadratic'})

BasisFunction: Explicit basis function (enum: {'None','Constant','Linear','PureQuadratic'})

Threshold: Threshold to switch to large data fitting algorithm (int: [1,Inf])

ActiveSetSize: Active set size (int: [1,Inf])

ActiveSetMethod: Large scale active set method (enum: {'SGMA','Entropy','Likelihood','Random'})

FitMethod: Large data fit method (enum: {'SD','FIC','SR'})

1 Commands

1-188

PredictMethod: Large data predict method (enum: {'Exact','BCD','SD','FIC','SR'})

InitializeMethod: Initialize hyperparameters method (enum: {'LOO-loss','logML','none'})

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — Polynomial Properties

mbcmodel.linearmodel:Polynomial

Order: Polynomial order (vector int: {[0,Inf],NumInputs})

InteractionOrder: Maximum order of interaction terms (int: [0,Inf])

TransformInputRange: Transform inputs (Boolean)

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {'Always','Never','Step'} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — Hybrid Spline Properties

mbcmodel.linearmodel:Hybrid Spline

Order: Spline and polynomial order (vector int: {[0,3],NumInputs})

SplineVariable: Spline variable

SplineInteraction: Order of interaction between spline and polynomial (int: [0,3])

Knots: Position of knots (vector real)

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {'Always','Never','Step'} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — RBF Properties

mbcmodel.linearmodel:RBF

Kernel: RBF kernel (enum:
{'multiquadric','recmultiquadric','gaussian','thinplate','logisticrbf','wendland',

'linearrbf','cubicrbf'})

Continuity: Continuity for Wendland kernel (0,2,4,6) (int: [0,6])

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {'Always','Never','Step'} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

 Properties (for models)

1-189

Linear Models — Polynomial-RBF Properties

mbcmodel.linearmodel:Polynomial-RBF

Order: Polynomial order (vector int: {[0,Inf],NumInputs})

InteractionOrder: Maximum order of interaction terms (int: [0,Inf])

Kernel: RBF kernel (enum:

{'multiquadric','recmultiquadric','gaussian','thinplate','logisticrbf','wendland',

'linearrbf','cubicrbf'})

Continuity: Continuity for Wendland kernel (0,2,4,6) (int: [0,6])

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {'Always','Never','Step'} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — Hybrid Spline-RBF Properties

mbcmodel.linearmodel:Hybrid Spline-RBF

Order: Spline and polynomial order (vector int: {[0,3],NumInputs})

SplineVariable: Spline variable

SplineInteraction: Order of interaction between spline and polynomial (int: [0,3])

Knots: Position of knots (vector real)

Kernel: RBF kernel (enum:
{'multiquadric','recmultiquadric','gaussian','thinplate','logisticrbf','wendland',

'linearrbf','cubicrbf'})

Continuity: Continuity for Wendland kernel (0,2,4,6) (int: [0,6])

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {'Always','Never','Step'} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Nonlinear Models — Free Knot Spline Properties

mbcmodel.model:Free Knot Spline

Order: Spline order (int: [0,3])

NumKnots: Number of knots (int: 'Positive')

1 Commands

1-190

Nonlinear Models — Neural Network Properties

mbcmodel.model:Neural Network

HiddenLayers: Number of hidden layers (int: [1,2])

Neurons: Number of Neurons in each hidden layer (vector int: 'Positive')

Examples
>> modelprops=M.Properties

modelprops =
Polynomial Properties
 Order: [3 3 3 3]
 InteractionOrder: 3
 TransformInputRange: 1
 ParameterNames: {35x1 cell}
 StepwiseStatus: {35x1 cell}
 BoxCox: 1

>> M.Properties.Order = [3 2 2 3]

M =

 1 + 2*X1 + 10*X4 + 15*X2 + 18*X3 + 3*X1^2 + 6*X1*X4
...+ 8*X1*X2 + 9*X1*X3 +
 11*X4^2 + 13*X4*X2 + 14*X4*X3 + 16*X2^2 + 17*X2*X3
...+ 19*X3^2 + 4*X1^3 +
 5*X1^2*X4 + 7*X1*X4^2 + 12*X4^3
 InputData: [0x4 double]
 OutputData: [0x1 double]
 Status: Being Edited
 Linked to Response: <not linked>

See Also
Type (for models) | LocalModel Properties

 Properties (for models)

1-191

RecordsPerTest
Number of records in each test

Syntax
numRecords = D.RecordsPerTest

Description
This is a property of data objects: mbcmodel.data. It returns an array, of length NumberOfTests,
containing the number of records in each test.

Examples
numRecords = D.RecordsPerTest;

1 Commands

1-192

Remove
Remove project, test plan, model, or boundary model

Syntax
OK = Remove(A) removes project, test plan, or model object A.

Description
This is a method of all the nondata objects: projects, test plans, all models, and boundary trees.

A can be any project, test plan, or model object.

You cannot remove datum models if other models use them.

For boundary trees, specify which boundary model to remove: Remove(BoundaryTree,Index).

Examples
OK = Remove(R3);

Introduced before R2006a

 Remove

1-193

RemoveData
Remove data from project

Syntax
P = RemoveData(P, D)

P = RemoveData(P, Index)

Description
This is a method of mbcmodel.project.

You can refer to the data object either by name or index.

P is the project object.

D is the data object you want to remove.

Index is the index of the data object you want to remove.

Examples
RemoveData(P, D);

See Also
CreateData | Data | CopyData

Introduced before R2006a

1 Commands

1-194

RemoveDesign
Remove design from test plan

Syntax
RemoveDesign(T,Name)
RemoveDesign(T,Level,Name)
RemoveDesign(T,D)
RemoveDesign(T,Level,D)

Description
RemoveDesign is a method of mbcmodel.testplan.

RemoveDesign(T,Name) removes a design with a matching name from the test plan T.

Name can be a character vector, or a cell array of character vectors.

RemoveDesign(T,Level,Name) removes a design with a matching name from the specified level of
the test plan. By default the level is the outer level (i.e., Level 1 for one-stage, Level 2 (global) for
two-stage).

RemoveDesign(T,D) removes D, an array of designs to be deleted. All designs with matching names
are deleted.

RemoveDesign(T,Level,D) removes D from the specified level.

See Also
AddDesign | UpdateDesign | FindDesign

Introduced in R2008a

 RemoveDesign

1-195

RemoveFilter
Remove user-defined filter from dataset

Syntax
D = RemoveFilter(D, Index)

Description
This is a method of the mbcmodel.data object.

Index is the input index indicating the filter to remove. Use the property Filters to find out which
filters are present.

Examples
RemoveFilter(D1, 3);

See Also
AddFilter | Filters

Introduced before R2006a

1 Commands

1-196

RemoveOutliers
Remove outliers in input data by index or rule, and refit models

Syntax
R = RemoveOutliers(R, Selection);

R = RemoveOutliers(L, LocalSelection, GlobalSelection)

Description
This is a method of the local model object, mbcmodel.localresponse and the response feature
model object mbcmodel.response.

All the response feature models are refitted after the local models are refitted. Outlier selection is
applied to all tests.

For a response model:

• R is a response object.
• Selection specifies either a set of indices or the name of an outlier selection function, of the

following form:

Indices = myMfile(model, data, factorName)

The factors are the same as defined in DiagnosticStatistics.
• data contains the factors as columns of a matrix.
• factorNames is a cell array of the names for each factor.

For a local model:

• LocalSelection is the local outlier selection indices or function.
• GlobalSelection is the global outlier selection indices or function.

Outlier selection functions must conform to this prototype:

Indices = myMfile(model, data, factorName)

The factors are the same as appear in the scatter plot in the Model Browser.
• data contains the factors as columns of a matrix.
• factorNames is a cell array of the names for each factor.

Examples
outlierind = [1 4 6 7];
RemoveOutliers(thisRF, outlierind);

 RemoveOutliers

1-197

See Also
RemoveOutliersForTest

Introduced before R2006a

1 Commands

1-198

RemoveOutliersForTest
Remove outliers on test by index or rule and refit models

Syntax
L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER, LOCALSELECTION)
L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER, LOCALSELECTION,
doUpdate)

Description
This is a method of mbcmodel.localresponse.

L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER, LOCALSELECTION) removes
outliers, refits the local model, and refits the response feature models.

L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER, LOCALSELECTION,
doUpdate) removes outliers and if doUpdate is true, refits all response features after the local
model is refitted.

TESTNUMBER is the single test number to refit.

LOCALSELECTION can either be a set of indices or a function name.

An outlier selection function must take the following form:

INDICES = MYMFILE(MODEL, DATA, FACTORNAME);

The factors are the same as defined in DiagnosticStatistics.

DATA contains the factors as columns of a matrix, and FACTORNAME is a cell array of the names for
each factor.

Examples
For a local response LOCALRESPONSE, to remove first two data points and do not update response
features:

RemoveOutliersForTest(LOCALRESPONSE,1,1:2,false);

To find list of indices of removed data points:

indices = OutliersForTest(LOCALRESPONSE,1);

To restore first data point:

RestoreDataForTest(LOCALRESPONSE,1,1,false);

To restore all data:

RestoreDataForTest(LOCALRESPONSE,1,':',false);

 RemoveOutliersForTest

1-199

To update response features:

UpdateResponseFeatures(LOCALRESPONSE);

See Also
UpdateResponseFeatures | RestoreDataForTest | OutlierIndicesForTest |
RemoveOutliers

Introduced before R2006a

1 Commands

1-200

RemovePoints
Remove all nonfixed design points

Syntax
D = RemovePoints(D)
D = RemovePoints(D,PointType)
D = RemovePoints(D,indices)

Description
RemovePoints is a method of mbcdoe.design.

D = RemovePoints(D) removes all nonfixed points from the design.

D = RemovePoints(D,PointType) removes the specified type of points, where PointType is one
of 'free','fixed' or 'data'.

D = RemovePoints(D,indices) removes the points specified by indices.

Examples
To remove all free points:

Design = RemovePoints(Design,'free');

See Also
FixPoints

Introduced in R2008a

 RemovePoints

1-201

RemoveTestFilter
Remove user-defined test filter from dataset

Syntax
D = RemoveTestFilter(D, Index)

Description
This is a method of mbcmodel.data.

D is the data object.

Index is the input index indicating the filter to remove.

Use the property TestFilters to find the index of the test filter you want to remove.

Examples
RemoveTestFilter(D1, 2);

See Also
AddTestFilter | TestFilters

Introduced before R2006a

1 Commands

1-202

RemoveVariable
Remove user-defined variable from dataset

Syntax
D = RemoveVariable(D, Index)

Description
This is a method of mbcmodel.data.

D is the data object.

Index is the input index indicating the variable to remove.

Use UserVariables to find the index of the variable you want to remove.

Examples
RemoveVariable(D1, 2);

See Also
AddVariable | UserVariables

Introduced before R2006a

 RemoveVariable

1-203

Response
Response for model object

Syntax
R = model.Response

Description
Models. This is a property of mbcmodel.model. It returns the response the model object came from
(e.g. a response object).

If you make changes to the model object (for example by changing the model type using ModelSetup,
or using StepwiseRegression) you must use UpdateResponse to return the new model object to the
response in the project.

Boundary models. This is a property of mbcboundary.TwoStageTree.

The Response property contains a response boundary model tree (read only). Boundary models in
the response model boundary tree are fitted with all local and global input data for the test plan.

Examples
R = model.Response;

See Also
UpdateResponse | ModelSetup

1 Commands

1-204

ResponseFeatures(Local Model)
Set of response features for local model

Syntax
RFs = L.ResponseFeatures

Description
This is a property of the local model object, mbcmodel.localmodel.

RFs = L.ResponseFeatures returns a mbcmodel.responsefeatures object. L is the local
model.

See “Understanding Model Structure for Scripting” in the Getting Started documentation for an
explanation of the relationships between local models, local responses, and other responses.

Available properties and methods are described in the following tables.

Property Description
EvaluationPoints Cell array of evaluation points for the response feature

set (read-only). An element of EvaluationPoints is
empty if the response feature does not use the
Evaluation point. This property is set up when the
response feature is created (see the Add method).

Types Cell array of types for response feature set (read-only).
This property is set up when the response feature is
created (see the Add method).

NumberOfResponseFeatures Number of response features in set (read-only).
IsFitted The local model has been fitted.

Method Description
Add Add new response feature to response feature set

RF = Add(RF,RFtype)

RFtype is a description character vector belonging to the set of
alternative response features. See getAlternativeTypes.

RF = Add(RF,RFtype,EvaluationPoint)

EvaluationPoint is a row vector with an element for each model
input and is used for response features that require an input value
to evaluate the response feature (e.g., function evaluation,
derivatives). It is an error to specify an evaluation point for a
response feature type that does not require an evaluation point.

 ResponseFeatures(Local Model)

1-205

Method Description
Remove Remove a response feature from the response feature set

RF = Remove(RF,index)

Select Select a subset of response features from the response feature set

RF = Select(RF,indices)

getDefaultSet List of default response features

RF = getDefaultSet(RF)

Returns an mbcmodel.responsefeatures object with the
default set of response features for the local model.

getAlternativeTypes List of all alternative response feature types for local model

RFtypes = getAlternativeTypes(RF)

Returns a cell array of response feature type character vectors for
the local model.

Evaluate Evaluate response features

 rfvals = Evaluate(RF);

Returns the values for the response features for the current local
model.

[rfvals,stderr] = Evaluate(RF)

Also returns the standard errors for the response features for the
current local model. The local model must be fitted before
evaluating response features.

Jacobian Jacobian matrix of response features with respect to parameters

J = Jacobian(RF)

The local model must be fitted before calculating the Jacobian
matrix.

Covariance Covariance matrix for response features

rfvals = Covariance(RF);

The local model must be fitted before calculating the covariance
matrix.

Correlation Correlation matrix for response features

rfvals = Correlation(RF)

Errors occur if model is not fitted.

1 Commands

1-206

Method Description
ReconstructSets List of subsets of response features which can be used to

reconstruct the local model

RFlist = ReconstructSets(RF)

RFlist is a cell array of mbcmodel.responsefeatures. Each
element of RFlist can be used to reconstruct the local model
from response feature values.

Examples
First, create a local model object:

L = mbcmodel.CreateModel('Local Polynomial',2)

L =

 1 + 2*X1 + 8*X2 + 3*X1^2 + 6*X1*X2 + 9*X2^2 + 4*X1^3...
 + 5*X1^2*X2 + 7*X1*X2^2 +
 10*X2^3
 InputData: [0x2 double]
 OutputData: [0x1 double]
 Status: Not fitted
 Linked to Response: not linked

The properties of the local model object are the same as the properties of an mbcmodel.model
object with the additional property “ResponseFeatures”. Look at the response features property as
follows:

>> RFs = L.ResponseFeatures

RFs =

Response features for Polynomial
 'Beta_1'
 'Beta_X1'
 'Beta_X1^2'
 'Beta_X1^3'
 'Beta_X1^2*X2'
 'Beta_X1*X2'
 'Beta_X1*X2^2'
 'Beta_X2'
 'Beta_X2^2'
 'Beta_X2^3'

% Set up response features
RFtypes = getAlternativeTypes(RFs);
RF = Add(RF, RFtypes{end},-10);

% assign to local model
L.ResponseFeatures = RFs;

 ResponseFeatures(Local Model)

1-207

ResponseFeatures(Local Response)
Array of response features for local response

Syntax
RFs = L.ResponseFeatures

Description
This is a property of the local model object, mbcmodel.localresponse.

L is the local response.

See “Understanding Model Structure for Scripting” in the Getting Started documentation for an
explanation of the relationships between local responses and other responses.

Examples
RFs = Local.ResponseFeatures;

1 Commands

1-208

ResponseSignalName
Name of signal or response feature being modeled

Syntax
ysignal = R.ResponseSignalName

Description
This is a property of all response objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

R can be a hierarchical response, local response or response.

Examples
yName = local.ResponseSignalName;

See Also
InputSignalNames

 ResponseSignalName

1-209

Responses
Array of available responses for test plan

Syntax
R = T.Responses

Description
This is a property of mbcmodel.testplan.

T is the test plan object.

See “Understanding Model Structure for Scripting” for an explanation of the relationship between
test plans and responses.

Examples
R = T.Responses;

1 Commands

1-210

RestoreData
Restore removed outliers

Syntax
R = RestoreData(RESPONSE)
R = RestoreData(RESPONSE, OUTLIERINDICES)

Description
This is a method of mbcmodel.localresponse and mbcmodel.response.

R = RestoreData(RESPONSE) restores all data previously removed as outliers.

R = RestoreData(RESPONSE, OUTLIERINDICES) restores all removed data specified in
OutlierIndices. For a local response, the indices refer to record numbers for all tests.

Examples
RemoveOutliers(R, 1:5)
RestoreData(R, 1:2)

See Also
RemoveOutliersForTest | RemoveOutliers | OutlierIndices

Introduced in R2007a

 RestoreData

1-211

RestoreDataForTest
Restore removed outliers for test

Syntax
L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices)
L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices, doUpdate)

Description
This is a method of mbcmodel.localresponse.

L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices) restores all removed
data for TESTNUMBER specified in Indices.

L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices, doUpdate) restores all
specified removed data and if doUpdate is true, refits all response features. By default, all response
feature models will be updated. If a number of tests are being screened it is more efficient to set
doUpdate to false and call UpdateResponseFeatures when all the tests have been screened.

Indices must be numbers and must belong to the set of outliers in OutliersForTest.

Examples
For a local response LOCALRESPONSE, to remove first two data points without updating response
features:

RemoveOutliersForTest(LOCALRESPONSE,1,1:2,false);

To find list of indices of removed data points:

indices = OutliersForTest(LOCALRESPONSE,1);

To restore first data point:

RestoreDataForTest(LOCALRESPONSE,1,1,false);

To restore all data:

RestoreDataForTest(LOCALRESPONSE,1,':',false);

To update response features:

UpdateResponseFeatures(LOCALRESPONSE);

See Also
UpdateResponseFeatures | RemoveOutliersForTest | OutlierIndicesForTest

Introduced in R2007a

1 Commands

1-212

RollbackEdit
Undo most recent changes to data

Syntax
D = RollbackEdit(D)

Description
This is a method of mbcmodel.data. Use this if you change your mind about changes you have made
to the data since you called BeginEdit, such as importing or appending data, applying filters or
creating new user variables.

There are no input arguments. If for your data object D, IsBeingEdited is true, then
RollbackEdit will return it to the same state as it was when BeginEdit was called. If
IsEditable(D) is true then you can still modify it, if not it will revert to being read-only. See the
example below.

Examples
D = P.Data;
BeginEdit(D);
AddVariable(D, 'TQ = tq', 'lbft');
AddFilter(D, 'TQ < 200');
DefineTestGroups(D, {'RPM' 'AFR'}, [50 10], 'MyLogNo');
RollbackEdit(D);

This returns the data object D to the same state as when BeginEdit was called. If the data object
IsEditable then the returned object will still return true for IsBeingEdited, else it will not be
editable.

For an example case where IsEditable is false and IsBeingEdited is true:

D = p.Data;
D1 = p.Data;
BeginEdit(D1);
tp = p.Testplan;
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are mbcmodel.data objects.

At this point IsEditable for D1 becomes false because it is now Attached to the test plan and
hence can only be modified from the test plan. However

OK = D1.IsBeingEdited

will still be true at this point, and trying to call CommitEdit will fail.

See Also
BeginEdit | CommitEdit | IsBeingEdited

 RollbackEdit

1-213

Introduced before R2006a

1 Commands

1-214

Save
Save project

Syntax
OK = Save(P)
OK = Save(P, filename)

Description
This is a method of mbcmodel.project.

OK = Save(P) saves the project P to the currently selected Filename. The project Name is used as
the Filename if none has previously been specified. If neither has been specified then you see a
warning that your project has been saved to Untitled.mat.

OK = Save(P, filename) saves the project P with the name specified by filename.

Examples
OK = Save(proj, 'Example.mat');

See Also
SaveAs

Introduced before R2006a

 Save

1-215

SaveAs
Save project to new file

Syntax
OK = SaveAs(P, Name)

Description
This is a method of mbcmodel.project.

Examples
OK = SaveAs(proj, 'Example.mat');

See Also
Save

Introduced before R2006a

1 Commands

1-216

Scatter2D
Plot design points

Syntax
Scatter2D(D,Xindex,Yindex)
Scatter2D(D,xindex,yindex,plotArguments)

Description
Scatter2D is a method of mbcdoe.design.

Scatter2D(D,Xindex,Yindex) creates a scatter plot of the design points in design D, where X and
Y are the indices or symbols for the input factors to plot on the X and Y axis.

Scatter2D(D,xindex,yindex,plotArguments) creates a scatter plot with additional
arguments.plotArguments specifies additional arguments to the MATLAB plot command. The plot
command used in Scatter2D is

plot(D.Points(:,v1),D.Points(:,v2),varargin{:})

The default for varargin is '.'.

Examples
Scatter2D(mainDesign, 1, 2);

Introduced in R2008a

 Scatter2D

1-217

SetTermStatus
Set status of model terms

Syntax
M.Properties = M.Properties.SetTermStatus(Terms, Status)

Description
This is a method of mbcmodel.linearmodelproperties.

M.Properties = M.Properties.SetTermStatus(Terms, Status) sets the status of the
specified terms in this model. Status must be a cell array of status character vectors.

The stepwise status for each term can be Always, Never or Step. The status determines whether you
can use the StepwiseRegression function to throw away terms in order to try to improve the
predictive power of the model.

M is an mbcmodel.linearmodel object.

Examples
M = mbcmodel.CreateModel('Polynomial', 2);
M.Properties = M.Properties.SetTermStatus([1 2; 1 0],
 {'Never', 'Always'});

This example sets the status of the X1*X2^2 term to Never and the X1 term to Always.

See Also
GetTermStatus | StepwiseStatus

Introduced in R2007a

1 Commands

1-218

SetupDialog
Open fit algorithm setup dialog box

Syntax
[OPT,OK]= SetupDialog(F)

Description
This is a method of mbcmodel.fitalgorithm.

[OPT,OK]= SetupDialog(F) opens the fit algorithm setup dialog box, where you can edit the
algorithm parameters. F is a mbcmodel.fitalgorithm object.

If you click Cancel to dismiss the dialog, OK = false and no changes are made. If you click OK to
close the dialog box, then OK = true and your new chosen algorithm parameters are set up.

Examples
[OPT,OK]= SetupDialog(F)

See Also
CreateAlgorithm | getAlternativeNames

Introduced in R2007a

 SetupDialog

1-219

SignalNames
Names of signals held by data

Syntax
names = D.SignalNames

Description
This is a property of mbcmodel.data.

This is a cell array of character vectors that hold the names of the signals within the data. These
names can be used to reference the appropriate signals in the Value method. The subset of these
names that are being used for modeling may also be found in the test plan and responses
InputSignalNames properties.

Examples
names = D.SignalNames;

See Also
SignalUnits | InputSignalNames | Value

1 Commands

1-220

SignalUnits
Names of units in data

Syntax
units = D.SignalUnits

Description
This is a property of mbcmodel.data.

D is the data object.

It returns a cell array of character vectors holding the units of the signals.

Examples
units = D.SignalUnits;

See Also
SignalNames

 SignalUnits

1-221

SingleVIF
Single VIF matrix for linear model parameters

Syntax
VIF = SingleVIF(LINEARMODEL)

Description
This is a method of mbcmodel.linearmodel.

VIF = SingleVIF(LINEARMODEL) calculates the single Variance Inflation Factor (VIF) matrix for
the linear model parameters.

Examples
VIF = SingleVIF(knot_model)

See Also
ParameterStatistics

Introduced in R2007a

1 Commands

1-222

SizeOfParameterSet
Number of model parameters

Syntax
N = params.SizeOfParameterSet

Description
This is a property of mbcmodel.linearmodelparameters, for linear models only. It returns the
total possible number of parameters in the model. Note that not all of these terms are necessarily
currently included in the model, as you may remove some using StepwiseRegression.

Call NumberOfParameters to see how many terms are currently included in the model. Call
StepwiseSelection to see which terms are included and excluded.

Use Names and Values to get the parameter names and values.

Examples
N = knotparams.SizeOfParameterSet

See Also
NumberOfParameters | StepwiseSelection | Names | Values

 SizeOfParameterSet

1-223

StatisticsDialog
Open summary statistics dialog box

Syntax
[model,OK]= StatisticsDialog(model)

Description
This is a method of mbcmodel.model.

[model,OK]= StatisticsDialog(model) opens the Summary Statistics dialog box, where you
can select the summary statistics you want to use.

If you click Cancel to dismiss the dialog, OK = false and no changes are made. If you click OK to
close the dialog box, then OK = true and your new chosen summary statistics are set up.

See Also
SummaryStatistics

Introduced in R2007a

1 Commands

1-224

Status
Model status: fitted, not fitted or best

Syntax
S = model.Status

Description
This is a property of mbcmodel.model. It returns a character vector: `Fitted' if the model is fitted,
`Not fitted' if the model is not fitted (for example there is not enough data to fit the model), or
`Best' if the model has been selected as best from some alternative models. A model must be
Fitted before it can be selected as Best.

Examples
S = knot.Status
S =
 `Fitted'

See Also
ChooseAsBest

 Status

1-225

StepwiseRegression
Change stepwise selection status for specified terms

Syntax
[S, model] = StepwiseRegression(model, optional toggleTerms)

Description
This is a method of mbcmodel.model, for linear models only. This method returns the Stepwise table
(as in the Stepwise values for ParameterStatistics). Leave out toggleTerms to get the current
Stepwise values. You can choose to remove or include parameters using StepwiseRegression, as long
as their StepwiseStatus is Step.

The Stepwise values returned are the same as those found in the table in the Stepwise GUI. For each
parameter, the columns are: the value of the coefficient, the standard error of the coefficient, the t
value and Next PRESS (the value of PRESS if the status of this term is changed at the next iteration).
Look for the lowest Next PRESS to indicate which terms to toggle in order to improve the predictive
power of the model.

Call StepwiseRegression to toggle between in and out for particular parameters. toggleTerms can
be either an index that specifies which parameters to toggle, or an array or logical where a true value
indicates that a toggle should occur. The example shown toggles parameter 4, after inspection of the
Next PRESS column indicates changing the status of this term will result in the lowest PRESS.
StepwiseRegression returns the new Stepwise values after toggling a parameter.

After making changes to the model using StepwiseRegression you must call UpdateResponse.

Use StepwiseStatus (on the child modelparameters object) to see which parameters have a status of
Step; these can be toggled between in and out using StepwiseRegression (on the parent model
object).

Use StepwiseSelection (on the child modelparameters object) to view which terms are in and out, as
shown in the example.

Examples
[S, knot] = StepwiseRegression(knot)
S =

 1.0e+003 *

 0.1316 0.0606 0.0200 NaN
 0.0000 0.0000 0.0200 2.0919
 0.0000 0.0000 0.0190 0.2828
 -0.0000 0.0000 0.0190 0.2531
 0.0000 0.0000 0.0190 0.2680
 -0.0551 0.0347 0.0200 0.2566
 0.0919 0.0264 0.0200 0.3672
 -0.0040 0.0023 0.0200 0.2564
 -0.0178 0.0095 0.0200 0.2644

1 Commands

1-226

 0.0008 0.0004 0.0200 0.2787

[S, knot] = StepwiseRegression(knot, 4)

S =

 129.8406 60.1899 19.0000 NaN
 0.0048 0.0008 19.0000 662.3830
 0.0000 0.0000 18.0000 290.8862
 -0.0021 0.0019 19.0000 245.9833
 0.0001 0.0002 18.0000 281.4104
 -50.4091 34.7401 19.0000 262.8346
 94.9675 26.3690 19.0000 400.6572
 -4.0887 2.2488 19.0000 262.6588
 -17.9412 9.4611 19.0000 276.7535
 0.8229 0.3734 19.0000 292.0827

params = knot.Parameters;
N = params.StepwiseSelection

N =
 'in'
 'in'
 'out'
 'in'
 'out'
 'in'
 'in'
 'in'
 'in'
 'in'

>> StepwiseRegression(knot, 4);
params = knot.Parameters;
N = params.StepwiseSelection

N =
 'in'
 'in'
 'out'
 'out'
 'out'
 'in'
 'in'
 'in'
 'in'
 'in'

See Also
StepwiseSelection | StepwiseStatus | UpdateResponse

Introduced before R2006a

 StepwiseRegression

1-227

StepwiseSelection
Model parameters currently included and excluded

Syntax
N = paramsknot.StepwiseSelection

Description
This is a read-only property of mbcmodel.linearmodelparameters, for linear models only. It
returns a status for each parameter in the model, in or out, depending on whether the term is
included or excluded. You can choose to remove or include parameters using StepwiseRegression, as
long as their StepwiseStatus is Step. Call StepwiseRegression (on the parent model object) to toggle
between in and out for particular parameters. You must then call UpdateResponse before calling
StepwiseSelection.

Examples
 N = paramsknot.StepwiseSelection
N =
 'in'
 'in'
 'out'
 'out'
 'out'
 'in'
 'in'
 'in'
 'in'
 'in'

See Also
StepwiseRegression | StepwiseStatus | NumberOfParameters | UpdateResponse

1 Commands

1-228

StepwiseStatus
Stepwise status of parameters in model

Syntax
N = paramsknot.StepwiseStatus

Description
This is a method of mbcmodel.linearmodelparameters, for linear models only. It returns the
stepwise status of each parameter in the model.

The stepwise status for each term can be Always, Never or Step. The status determines whether you
can use the StepwiseRegression function to throw away terms in order to try to improve the
predictive power of the model.

• Always - Always included in the model.
• Never - Never included in the model.
• Step - You can choose whether to include or exclude this term. Do this by using

StepwiseRegression to toggle between in and out for particular parameters.

Use StepwiseSelection to find out which terms are currently included and excluded.

Examples
N = paramsknot.StepwiseStatus
N =
 'Always'
 'Step'
 'Step'
 'Step'
 'Step'
 'Step'
 'Step'
 'Step'
 'Step'
 'Step'

See Also
StepwiseRegression | StepwiseSelection

Introduced before R2006a

 StepwiseStatus

1-229

Style
Style of design type

Syntax
D.Style

Description
Style is a read-only property of mbcdoe.design.

D.Style returns the style of the design.

The style of the design is one of :

• 'User-defined'
• 'Optimal'
• 'Space-filling'
• 'Classical'
• 'Experimental data'

The read-only Style property is derived from the design Type.

See Also
Type (for designs and generators)

1 Commands

1-230

SummaryStatistics
Summary statistics for response

Syntax
S = SummaryStatistics(M)
S = SummaryStatistics(M, Names)

Description
This is a method of all model objects (mbcmodel.model and mbcmodel.localmodel) and response
objects (mbcmodel.hierarchicalresponse, mbcmodel.localresponse, and
mbcmodel.response).

These statistics appear in the Summary Statistics pane of the Model Browser GUI.

S = SummaryStatistics(M) returns summary statistics for the model or response in a structure
array containing Statistics and Names fields.

S = SummaryStatistics(M, Names) returns summary statistics specified by Names for the model
or response in an array. Names can be a char array, or a cell array of character vectors.

Examples
S = SummaryStatistics(R2);

See Also
DiagnosticStatistics | AlternativeModelStatistics

Introduced before R2006a

 SummaryStatistics

1-231

ValidationRMSE
Calculates the validation RMSE for model data

Syntax
S = ValidationRMSE(model,X,Y)

Description
This is a method of mbcmodel.model

S = ValidationRMSE(model,X,Y) calculates the root-mean-square error (RMSE) of a validation
set.

• rmse=sqrt(sum((Y-evaluate(model,X)).^2)/N)
• X and Y are table objects or numeric arrays. N is the number of data points.

Examples
S = ValidationRMSE(model,X,Y)

See Also
SummaryStatistics | UpdateResponse

Introduced in R2019a

1 Commands

1-232

SummaryStatisticsForTest
Statistics for specified test

Syntax
SS = SummaryStatisticsForTest(LocalResponse, TestNumber)
SS = SummaryStatisticsForTest(LocalResponse,TestNumber,Names)

Description
This is a method of mbcmodel.localresponse.

SS = SummaryStatisticsForTest(LocalResponse, TestNumber) returns a structure array
containing Statistics and Names fields values for the local model for test TestNumber.

SS = SummaryStatisticsForTest(LocalResponse,TestNumber,Names) returns an array of
the statistics specified by Names. Names can be a char array, or a cell array of character vectors.

Examples
SS = SummaryStatisticsForTest(L, 22)

See Also
SummaryStatistics

Introduced in R2007b

 SummaryStatisticsForTest

1-233

TestFilters
Structure array holding user-defined test filters

Syntax
testf = data.TestFilters

Description
This is a property of mbcmodel.data.

It returns a structure array holding information about the currently defined test filters for the data
object D. The array will be the same length as the number of currently defined test filters, with the
following fields for each filter:

• Expression — The character vector expression as defined in AddTestFilter or
ModifyTestFilter.

• AppliedOK — Boolean indicating that the filter was successfully applied.
• RemovedTests — Boolean vector indicating which tests the filter removed. Note that many filters

could remove the same test.
• Message — Character vector holding information on the success or otherwise of the filter.

Examples
testf = data.TestFilters;

See Also
AddTestFilter | ModifyTestFilter | RemoveTestFilter

1 Commands

1-234

TestPlan
Test plan containing boundary tree

Syntax
Tree.TestPlan

Description
This is a property of mbcboundary.Tree and mbcboundary.TwoStageTree.

Tree.TestPlan returns the test plan object that contains this boundary tree (read only).

 TestPlan

1-235

Testplans
Array of test plan objects in project

Syntax
tps = project.Testplans

Description
This is a property of mbcmodel.project.

P is the project object.

Examples
tps = project.Testplans;

1 Commands

1-236

Type (for boundary models)
Boundary model type

Syntax
B.Type

Description
This is a property of mbcboundary.AbstractBoundary and all subclasses.

B.Type returns the boundary model type. You can only choose a type when you create the boundary.
Use the Type input argument with CreateBoundary to specify what kind of boundary model you
want to create, such as 'Star-shaped', 'Range', 'Ellipsoid', 'Convex Hull'.

Use getAlternativeTypes to find out what types are available for the specified boundary model.

Available types depend on the boundary model, for example:

• For mbcboundary.Model, type can be 'Star-shaped', 'Range', 'Ellipsoid', or 'Convex
Hull'

• For mbcboundary.TwoStage, LocalModel requires a type of either Range or Ellipsoid, and
GlobalModel requires a type of Interpolating RBFonly.

• For mbcboundary.PointByPoint, the LocalModel type can be any valid type for
mbcboundary.Model.

You can only create boundaries of type 'Point-by-point' or 'Two-stage' from a Local boundary
tree, or from an existing boundary of type 'Point-by-point' or 'Two-stage'. You cannot create
or fit these types of boundary models outside a project. Fit them by adding the boundary model to the
boundary tree.

Examples
The following example creates a point-by-point boundary model from the Local boundary tree:

B = CreateBoundary(T.Boundary.Local,'Point-by-point');

Create a local boundary with type range:

B.LocalModel = CreateBoundary(B.LocalModel,'Range');

See Also
CreateBoundary | getAlternativeTypes

 Type (for boundary models)

1-237

Type (for candidate sets)
Candidate set type

Syntax
C.Type

Description
This is a property of mbcdoe.candidateset.

C.Type returns the candidate set type. You can only choose a type when you create the candidate
set, when calling CreateCandidateset.

You can specify the candidate set type during creation by using the Type property, e.g.,

CandidateSet = augmentedDesign.CreateCandidateSet...
('Type', 'Grid');

Other available properties depend on the candidate set type. To see the properties you can set, see
the table of candidate set properties, Candidate Set Properties (for Optimal Designs).

See Also
CreateCandidateSet

1 Commands

1-238

Type (for designs and generators)
Design type

Syntax
D.Type
G.Type = NewType

Description
This is a read-only property of mbcdoe.design, and a settable property of mbcdoe.generator.

D.Type returns the design type. You can only choose a type when you create designs. After design
creation, you can only set the Type of a mbcdoe.generator object, or when calling Generate or
Augment.

G.Type = NewType changes the Type, where G is a mbcdoe.generator object.

The design Type determines which properties you can set. To set properties, see Properties (for
design generators).

Get a list of types which could be used as alternative designs for current design, using
getAlternativeTypes, by entering the following syntax:

Dlist = getAlternativeTypes(D)

where D is an mbcdoe.design object.

The design Type must be one shown in the following table. The read-only Style property is derived
from the Type.

Style Type
Optimal D-Optimal

V-Optimal
A-Optimal

Classical Box-Behnken
Central Composite
Full Factorial
Plackett-Burman
Regular Simplex

Space-filling Lattice
Latin Hypercube Sampling
Stratified Latin Hypercube
Sobol Sequence
Halton Sequence

 Type (for designs and generators)

1-239

Style Type
Experimental data Design points replaced by data points
Custom Any design with a mix of Types (eg an optimally

augmented space-filling design)

Examples
To specify the Type while creating and then generating a design of a given size:

D = CreateDesign(model,'Type','Sobol Sequence')
D = Generate(D,128);

See Also
Properties (for design generators) | Generate | Augment

1 Commands

1-240

Type (for design constraints)
Design constraint type

Syntax
C.Type

Description
This is a property of mbcdoe.constraint.

C.Type returns the design constraint type. You can only choose a type when you create the
constraint, when calling CreateConstraint.

You can specify the constraint type during creation by using the Type property, e.g.,

c = D.CreateConstraint('Type','Linear')

Other available properties depend on the constraint type. See the table Constraint Properties.

The constraint Type must be one shown in the following table.

Constraint Type Description
'Linear' Linear design constraint:

1*Input1 + 1* Input2 + 1* Input3 <= 0
'Ellipsoid' Ellipsoid design constraint:

Ellipsoid at (Input1=0, Input2=0, Input3=0)
'1D Table' 1D Table design constraint:

InputY(InputX) <= InputY max
'2D Table' 2D Table design constraint:

InputZ(InputX,InputY) <=InputZmax

See Also
CreateConstraint | Constraint Properties

 Type (for design constraints)

1-241

Type (for models)
Valid model types

Syntax
model.Type
M = mbcmodel.CreateModel(Type, NUMINPUTS)
M2 = CreateModel(M, Type)

Description
This is a property of mbcmodel.model.

model.Type returns the model type. This property is set at creation time. See CreateModel.

The model Type determines which properties you can set. To set properties, see Properties (for
models), and LocalModel Properties.

Note Spaces and case in model Type are ignored.

The model type must be one shown in the following table.

Type Model Object
Polynomial mbcmodel.linearmodel
Hybrid Spline mbcmodel.linearmodel
RBF mbcmodel.linearmodel
Hybrid RBF mbcmodel.linearmodel
Polynomial-RBF mbcmodel.linearmodel
Hybrid Spline-RBF mbcmodel.linearmodel
Multiple Linear mbcmodel.linearmodel
Free Knot Spline mbcmodel.model
Transient mbcmodel.model
User-Defined mbcmodel.model
Neural Network mbcmodel.model
Interpolating RBF mbcmodel.model
Local Polynomial Spline mbcmodel.localmodel
Local Polynomial with Datum mbcmodel.localmodel
Local Polynomial mbcmodel.localmodel
Local Hybrid Spline mbcmodel.localmodel
Local Truncated Power Series mbcmodel.localmodel

1 Commands

1-242

Type Model Object
Local Free Knot Spline mbcmodel.localmodel
Local Multiple Models mbcmodel.localmodel
Local Growth mbcmodel.localmodel
Local User-Defined mbcmodel.localmodel
Local Transient mbcmodel.localmodel
Local Average Fit mbcmodel.localmodel

Get a list of types, using getAlternativeTypes, by entering the following syntax:

Mlist = getAlternativeTypes(M)

where M is an mbcmodel.model object.

Create an alternative model as follows: M = mbcmodel.CreateModel(Type, NUMINPUTS) or M2
= CreateModel(M, Type).

See Also
Properties (for models) | getAlternativeTypes | CreateModel

 Type (for models)

1-243

Units
Model output units

Syntax
model.Units
modelinput.Units

Description
This is a property of mbcmodel.model and mbcmodel.modelinput objects.

model.Units or modelinput.Units return the units of the model or modelinput object.

This property is set to the data signal units when the response is created or if a model is assigned to a
response. This property cannot be set when a response is attached to the model.

1 Commands

1-244

Update
Update boundary model in tree and fit to test plan data

Syntax
B = Update(Tree,Index,B)
B = Update(Tree,Index,B,InBest)

Description
This is a method of mbcboundary.Tree.

B = Update(Tree,Index,B) updates the boundary model B in the boundary tree Tree, and fits the
boundary model to the test plan data. Tree is an mbcboundary.Tree object, Index is the index to
boundary model in the tree, and B is a boundary model object. The boundary model must have the
same inputs as the boundary tree. The boundary model is always fitted when you add it to the
boundary tree. This fitting ensures that the fitting data is compatible with the test plan data. The
method returns the fitted boundary model.

B = Update(Tree,Index,B,InBest) updates the boundary model in the tree and InBest
specifies whether to include the boundary model in the best boundary model for the boundary tree.
By default, the boundary model retains its previous InBest status after calling Update.

See Also
Add | Remove | CreateBoundary

Introduced in R2009b

 Update

1-245

UpdateDesign
Update design in test plan

Syntax
D = UpdateDesign(T,D)
D = UpdateDesign(T,Level,D)

Description
UpdateDesign is a method of mbcmodel.testplan. You must call UpdateDesign to replace an
edited design in the test plan.

D = UpdateDesign(T,D) updates the design.

D = UpdateDesign(T,Level,D) updates the design at the specified devel.

D is the array of designs to be updated in the test plan, T.

Level is the test plan level. By default the level is the outer level (i.e., Level 1 for One-stage, Level 2
(global) for Two-stage).

The design Name is used to decide what to update. If no name match is found in the test plan, the
design is added.

Design names must be unique so any repeated names will be changed. The array of designs is an
output.

See Also
AddDesign | RemoveDesign | FindDesign

Introduced in R2008a

1 Commands

1-246

UpdateResponse
Replace model in response

Syntax
UpdateResponse(model)

M = UpdateResponse(M , R); updates the response specified by R

Description
This is a method of mbcmodel.model. This takes the model and places it back into the response it
came from. Appropriate action is taken if a refit is necessary because you have modified either the
model, response data or model data in the interim. For example, if you have changed the model type,
the new model is fitted to the response data. If you have changed the response data (e.g. removed an
outlier), the model is fitted to the new response data.

Note that when changing the model type or settings (using the ModelSetup command) the response
is not refitted until you call UpdateResponse. If you have changed the model by using
StepwiseRegression you must call UpdateResponse.

UpdateResponse(M)

updates the model in the response associated with the model.

M = UpdateResponse(M , R);

updates the response specified by R.

Examples
UpdateResponse(knot);

See Also
ModelSetup

Introduced before R2006a

 UpdateResponse

1-247

UpdateResponseFeatures
Refit response feature models

Syntax
UpdateResponseFeatures(L)

Description
This is a method of mbcmodel.localresponse.

UpdateResponseFeatures(L) refits all response feature models. You need to call this if you used
RemoveOutliersForTest without specifying refitting the response features (doUpdate set to false).

Examples
For a local response LOCALRESPONSE, to remove first two data points without updating response
features:

RemoveOutliersForTest(LOCALRESPONSE,1,1:2,false);

To update response features:

UpdateResponseFeatures(LOCALRESPONSE);

See Also
RemoveOutliersForTest | RestoreDataForTest

Introduced in R2007a

1 Commands

1-248

UserVariables
Structure array holding user-defined variables

Syntax
userV = D.UserVariables

Description
This is a property of mbcmodel.data.

This returns a structure array holding information about the currently defined filters. The array will
be the same length as the number of currently defined variables, with fields

• Variable — variable name

• Expression — The character vector expression as defined in AddVariable or
ModifyVariable

• Units — The character vector defining the units
• AppliedOK — Boolean indicating that the variable expression was successfully applied
• Message — Character vector holding information on the success or otherwise of the variable

Examples
myvars = D1.UserVariables

This returns the following information about the user-defined variable in the example data object D1:

 Variable: 'BSFC'
 Expression: 'BSFC = FUELFLO./(BTQ.*(ENGSPEED*2*pi/60))'
 Units: 'kg/Nm'
 AppliedOK: 1
 Message: 'Variable successfully added'

Variable is the parsed name of the variable being added. Note that this might differ from the name
used in AddVariable because the SignalName must be a valid MATLAB variable name, and hence
MBC will parse and modify the input name appropriately.

See Also
AddVariable | ModifyVariable | RemoveVariable

 UserVariables

1-249

Value
Double data from data object

Syntax
val = Value(D, varNames, testNumbers)

Description
This is a method of mbcmodel.data.

Use this to extract particular data values.

varNames is an optional input that specifies either the name of the signal that you want to extract
(such as 'SPK') or an array of names ({'SPK' 'AFR' 'TQ'}) the indices of the signals ([1 4 5]).
Defaults to ':' meaning all.

testNumbers is an optional input that specifies which test indices you want. Defaults to ':' meaning
all.

val outputs the double values held in the data.

Examples
dblValues = Value(D, 'SPK', 1);
dblValues = Value(D, {'SPK' 'AFR'}, ':');
dblValues = Value(D, [1 3 4 5]);
dblValues = Value(D, ':', [1 4 6 8]);

See Also
SignalNames

Introduced before R2006a

1 Commands

1-250

Values
Values of model parameters

Syntax
vals = paramsknot.Values

Description
This is a read-only property of mbcmodel.modelparameters. It returns the value of each parameter
in the model. Use Names to find out the names of these terms.

Examples
vals = paramsknot.Values;

See Also
Names

 Values

1-251

Widths
Width data from RBF model

Syntax
Width = params.Widths

Description
This is a property of mbcmodel.rbfmodelparameters, for Radial Basis Function (RBF) models only.

Width is usually a single value, but can also be of size 1 by number of variables in the case of the
width per dimension algorithm, or number of centers by number of variables in the case of tree
regression.

Examples
Width = params.Widths;

See Also
Centers

1 Commands

1-252

xregstatsmodel
Class for evaluating models and calculating PEV

Syntax
y = StatsModel(X)
Y = EvalModel(StatsModel, X)
[pev, Y] = pev(StatsModel, X)
C = ceval(StatsModel, X)
df = dferror(StatsModel)
Interval = predint(StatsModel,X,Level);
n = nfactors(StatsModel)
[n,symbols,units] = nfactors(StatsModel)

Description
Use the xregstatsmodel class to evaluate a model and calculate the prediction error variance.

You can create an xregstatsmodel object by either:

• Exporting a model from the Model Browser to the workspace.
• Converting any command line response or model object to an xregstatsmodel by using the

Export method.

Use the Export method to convert mbcmodel.hierarchicalresponse,
mbcmodel.localresponse, mbcmodel.response and mbcmodel.model objects to
xregstatsmodel objects. Use the syntax ExportedModel = Export(MODEL). The default
format is 'MATLAB' so you do not need to specify the format.

After you create an xregstatsmodel object, you can use the following methods to evaluate the
model and calculate the prediction error variance:

• EvalModel — evaluate model

pev — evaluate prediction error variance

ceval – evaluate boundary model

dferror — degrees of freedom for error

predint — calculate confidence intervals for model prediction

nfactors — get number of input factors

If you convert an mbcmodel.localresponse object using Export and you have not created a two-
stage model (hierarchical response object), then the output is an mbcPointByPointModel object.
Point-by-point models are created from a collection of local models for different operating points.
mbcPointByPointModel objects share all the same methods as xregstatsmodel except dferror.

 xregstatsmodel

1-253

y = StatsModel(X) evaluates the xregstatsmodel model object StatsModel at input values X.
X is a (N-by-NF) array, where NF is the number of inputs, and N the number of points to evaluate the
model at.

Y = EvalModel(StatsModel, X) evaluates the model at input values X. You can also evaluate
models using parentheses, e.g., y = StatsModel(X)

[pev, Y] = pev(StatsModel, X) calculates the prediction error variance of the model at X, pev,
and also returns Y the evaluated model at X.

C = ceval(StatsModel, X) evaluates the boundary model constraints at X.

df = dferror(StatsModel) gets the degrees of freedom for the model.

Interval = predint(StatsModel,X,Level); calculates the confidence interval for model
prediction. A Level confidence interval of the predictions is calculated about the predicted value.
The default value for Level is 99. Interval is a Nx2 array where the first column is the lower
bound and the second column is the upper bound.

n = nfactors(StatsModel) gets the number of input factors of the model. [n,symbols,units]
= nfactors(StatsModel) returns the number, symbols and units of the input factors in the model.

See Also
Export

Introduced in R2010a

1 Commands

1-254

	Commands
	MBC Model Fitting
	MBC Optimization
	ActiveInputs
	Add
	AddConstraint
	AddDesign
	AddFilter
	AddTestFilter
	AddVariable
	AliasMatrix
	AlternativeModelStatistics
	AlternativeResponses
	Append
	AttachData
	Augment
	BeginEdit
	BestDesign
	BestModel
	Boundary
	BoundaryModel
	BoxCoxSSE
	Centers
	cgoptimoptions
	cgoptimstore
	ChooseAsBest
	CommitEdit
	ConstrainedGenerate
	Constraints
	CopyData
	Correlation
	Covariance
	CreateAlgorithm
	CreateAlternativeModels
	CreateBoundary
	CreateCandidateSet
	CreateConstraint
	CreateData
	CreateDesign
	CreateModel
	CreateProject
	CreateResponse
	CreateResponseFeature
	CreateTestplan
	Data
	DataFileTypes
	DefaultModels
	DefineNumberOfRecordsPerTest
	DefineTestGroups
	designconstraint
	Designs
	DetachData
	DiagnosticStatistics
	Discrepancy
	DoubleInputData
	DoubleResponseData
	Evaluate
	Export
	ExportToMBCDataStructure
	ExportToTable
	Filename
	Filters
	FindDesign
	FitAlgorithm
	fit
	Fitted
	FixPoints
	Generate
	Generator
	GetAllTerms
	getAlternativeNames
	getAlternativeTypes
	GetIncludedTerms
	getLocalBoundary
	GetTermLabel
	GetTermStatus
	Global
	GlobalModel
	ImportFromFile
	ImportFromMBCDataStructure
	ImportFromTable
	InBest
	InputData
	Inputs
	InputSetupDialog
	InputSignalNames
	InputsPerLevel
	IsAlternative
	IsBeingEdited
	IsEditable
	Jacobian
	Level
	Levels
	Load
	LoadProject
	Local
	LocalBoundaries
	LocalModel
	LocalModel Properties
	LocalResponses
	MakeHierarchicalResponse
	MatchInputs
	Maximin
	mbcboundary.AbstractBoundary
	mbcboundary.Boolean
	mbcboundary.Model
	mbcboundary.PointByPoint
	mbcboundary.Tree
	mbcboundary.TwoStage
	mbcboundary.TwoStageTree
	mbcPointByPointModel
	Merge
	Minimax
	Model (for designs)
	Model Object
	ModelForTest
	modelinput
	Models
	ModelSetup
	Modified
	ModifyFilter
	ModifyTestFilter
	ModifyVariable
	MultipleVIF
	Name
	Names
	New
	NumInputs
	NumberOfParameters
	NumberOfPoints
	NumberOfRecords
	NumberOfTests
	OperatingPoints
	OptimalCriteria
	OutlierIndices
	OutlierIndicesForTest
	OutputData
	Owner
	Parameters
	ParameterStatistics
	PartialVIF
	PEV
	PEVForTest
	Points
	PointTypes
	PredictedValue
	PredictedValueForTest
	Properties (for candidate sets)
	Properties (for design constraints)
	Properties (for design generators)
	Properties (for models)
	RecordsPerTest
	Remove
	RemoveData
	RemoveDesign
	RemoveFilter
	RemoveOutliers
	RemoveOutliersForTest
	RemovePoints
	RemoveTestFilter
	RemoveVariable
	Response
	ResponseFeatures(Local Model)
	ResponseFeatures(Local Response)
	ResponseSignalName
	Responses
	RestoreData
	RestoreDataForTest
	RollbackEdit
	Save
	SaveAs
	Scatter2D
	SetTermStatus
	SetupDialog
	SignalNames
	SignalUnits
	SingleVIF
	SizeOfParameterSet
	StatisticsDialog
	Status
	StepwiseRegression
	StepwiseSelection
	StepwiseStatus
	Style
	SummaryStatistics
	ValidationRMSE
	SummaryStatisticsForTest
	TestFilters
	TestPlan
	Testplans
	Type (for boundary models)
	Type (for candidate sets)
	Type (for designs and generators)
	Type (for design constraints)
	Type (for models)
	Units
	Update
	UpdateDesign
	UpdateResponse
	UpdateResponseFeatures
	UserVariables
	Value
	Values
	Widths
	xregstatsmodel

